ترغب بنشر مسار تعليمي؟ اضغط هنا

تعلم نهاية إلى نهاية من الحوار الموجهة نحو الانسحاب

End-to-End Learning of Flowchart Grounded Task-Oriented Dialogs

362   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقترح مشكلة جديدة في مجال التعلم المنتهي في نهاية الحوار الموجهة نحو الوظيفة (TOD)، حيث يحاكي نظام مربع الحوار وكيل استكشاف الأخطاء وإصلاحها يساعد المستخدم من خلال تشخيص مشكلتهم (على سبيل المثال، السيارة لا تبدأ).ترتكز حوارات هذه الحوار في مخططات المخططات الموسيقية الخاصة بالمجال، والتي من المفترض أن يتبع الوكيل أثناء المحادثة.تعرض مهمتنا تحديات تقنية جديدة من أجل TOD العصبي، مثل التأريض على الكلام إلى مخطط الانسيابي دون عبوات صريحة، في إشارة إلى الصفحات اليدوية الإضافية عندما يطلب المستخدم سؤالا توضيحا، والقدرة على اتباع مخططات انسيابية غير مرئية في وقت الاختبار.نقوم بإصدار مجموعة بيانات (Flodial) تتكون من 2،738 مربعا على 12 نقطة مخاطرة مختلفة لاستكشاف الأخطاء وإصلاحها.نقوم أيضا بتصميم نموذج عصبي، FLONET، والذي يستخدم بنية توليد تعزز استرجاع لتدريب وكيل الحوار.تجد تجاربنا أن الألهام يمكن أن تفعل نقل طلقة صفرية إلى مخططات انسيابية غير مرئية، ويضع خط أساس قوي للبحث في المستقبل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

لكل مهمة حوار موجهة نحو تحقيق الأهداف ذات أهمية، يجب جمع كميات كبيرة من البيانات للحصول على التعلم المنتهي للنظام الحوار العصبي.جمع هذه البيانات هي عملية مكلفة وتستغرق وقتا طويلا.بدلا من ذلك، نوضح أنه يمكننا استخدام كمية صغيرة فقط من البيانات، والتي تستكمل البيانات من مهمة حوار ذات صلة.فشل التعلم بسذاجة من البيانات ذات الصلة في تحسين الأداء لأن البيانات ذات الصلة يمكن أن تكون غير متسقة مع المهمة المستهدفة.نحن نصف طريقة تعتمد على التعلم التعريفي والتي تتعلم بشكل انتقائي من بيانات مهمة الحوار ذات الصلة.نهجنا يؤدي إلى تحسينات بدقة كبيرة في مهمة الحوار مثال.
شهدت السنوات الأخيرة نجاحا رائعا في نظام الحوار الموجه نحو المهام في نهاية إلى نهج، خاصة عند دمج معلومات المعرفة الخارجية. ومع ذلك، لا تزال جودة الاستجابة المتولدة في معظم النماذج القائمة محدودة، ويرجع ذلك أساسا إلى عدم وجود التفكير الدقيق في المعرفة الحتمية (WRT الرموز المفاهيمية)، مما يجعل من الصعب التقاط التحولات المفهوم وتحديد نية المستخدم الحقيقية في الصليب -task سيناريوهات. لمعالجة هذه المشكلات، نقترح آلية نية جديدة لتحسين معرفة الكيان الحتمي بشكل أفضل. استنادا إلى مثل هذه الآلية، فإننا نقترح أيضا شبكة منطق النية (IR-NET)، والتي تتألف من التفكير المشترك والمتعدد، للحصول على تمثيلات نية من الرموز المفاهيمية التي يمكن استخدامها لالتقاط التحولات المفهوم المتضمنة في المهمة المحادثات المتداولة، بحيث لتحديد نية المستخدم بفعالية وتوليد ردود أكثر دقة. تحقق النتائج التجريبية من فعالية IR-NET، والتي توضح أنها تحقق الأداء الحديثة في مجموعات حوار ملثى متعدد المجالات.
تفترض أن معظم الدراسات السابقة حول حالة المعلومات (IS) تصنيف وتجسير التعرف anaphora أن ذكر الذهب أو معلومات شجرة النحوية يتم إعطاء (Hou et al.، 2013؛ Roesiger et al.، 2018؛ هو، 2020؛ يو ويوسيو، 2020) وبعد في هذه الورقة، نقترح نهج عصبي نهاية إلى نهج ل تصنيف حالة المعلومات. يتكون نهجنا من مكون استخراج الأوراق ومكون مهمة لحالة المعلومات. خلال وقت الاستدلال، يأخذ نظامنا نصا الخام حيث أن المدخلات ويولد يشرح مع وضع المعلومات الخاصة بهم. على Corpus Isnotes (Markert et al.، 2012)، نوضح أن مكون تعيين حالة معلوماتنا يحقق نتائج جديدة من الفنادق الجديدة على الحبيبات الجميلة التصنيف بناء على طلب الذهب. علاوة على ذلك، يؤدي نظامنا أفضل بكثير من خطوط الأساس الأخرى لكلا من الاستخراج والحبوب الدقيق التصنيف في الإعداد النهائي. أخيرا، نطبق نظامنا على باشي (Roesiger، 2018) و SCICORP (Roesiger، 2016) للتعرف على الحسارة المرجعية. نجد أن نظامنا المنتهي بنا مدروسا على ISNOT يحقق نتائج تنافسية بشأن تجسيد التعرف على الحساب مقارنة بالنظام السابق الذي يعتمد على معلومات النحوية وتدرب على مجموعات البيانات داخل المجال (YU و Poesio ، 2020).
جعلت نموذج الاستفادة من النماذج اللغوية الكبيرة المدربة مسبقا تقدما ملحوظا على معايير نظم الحوار الموجهة نحو المهام (TOD).في هذه الورقة، نجمع بين هذه النموذج مع إطار تعليمي متعدد المهام لنمذجة TOD نهاية إلى الطرفية من خلال اعتماد التنبؤ SPAN كامرأة م ساعدة.في الإعداد المحرز، يحقق نموذجنا نتائج أحدث نتائج جديدة مع درجات مشتركة من 108.3 و 107.5 على MultiWoz 2.0 و MultiWoz 2.1، على التوالي.علاوة على ذلك، نوضح أن التعلم متعدد المهام يحسن ليس فقط أداء النموذج ولكن قدرة تعميمه من خلال تجارب تكيف المجال في إعداد القليل من اللقطة.الرمز متاح في github.com/bepoetree/mttod.
يدقق هذا البرنامج التعليمي أحدث التقدم التقني في التحليل النحوي ودور بناء الجملة في مهام معالجة اللغة الطبيعية المناسبة (NLP)، حيث يتمثل الترجمة الدلالية في الدورات الدلالية (SRL) والترجمة الآلية (MT) المهام التي لديهاكان دائما مفيدا من أدلة النحوية الإعلامية منذ فترة طويلة، على الرغم من أن التقدم من طرازات التعلم العميق المنتهي في النهاية يظهر نتائج جديدة.في هذا البرنامج التعليمي، سنقدم أولا الخلفية وأحدث التقدم المحرز في التحليل النحوي و SRL / NMT.بعد ذلك، سنلخص الأدلة الرئيسية حول التأثيرات النحوية على هذين المهامين المتعلقين، واستكشاف الأسباب وراء كل من الخلفيات الحسابية واللغوية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا