ندرس في هذا البحث التطبيقات التوافقية بين -O فضاءات, و نوجد الشروط اللازمة و الكافية لوجود تطبيق توافقي, و نثبت انه لا توجد تطبيقات توافقية غير مبتذلة بين فضاءات -O ذات البنية الواحدة.
In this paper, we study conformal mapping between O- spaces. We
find The existing of the necessary and sufficient conditions for a
conformal mapping .
We prove that there is no nontrivial conformal mapping between Ospaces
with the same structure.
المراجع المستخدمة
Levi- Civita T. sulle transformation delle equazinal dinamiche // Ann. Milano – 1896 – ser 2, 24-p, 255-300
Bochner S. Currature in hermition metric // Bull. Amer. Math. Soc. -1947- 53.-p. 179- 195
Westlake. W.J. Hermation spaces ingeodesic correspondence// proc. Amer. Math. Soc- 1954.- 5,N2.- p301- 303
في هذا البحث سوف :
-1 نعرف فضاء ريمان , التطبيق المتزاوي , فضاء أينشتاين , فضاء أينشتاين
المتكرر ريتشيا.
-2 دراسة التطبيق المتزوي بين فضاءات أينشتاين الموافقة لسطح سوي , و
المتكررة ريتشيا.
ندرس في هذا البحث التطبيقات التوافقية بين نوع خاص من
فضاءات كيلير (الفضاءات التبادلية) و نثبت أنه إذا وجد تطبيق
توافقي بين فضاءات كيلير التبادلية فإن التطبيق يكون تحاكياً.
نعرف أهم المفاهيم المتعلقة بالبحث:
فضاء ريمان, التطبيق المتزاوي, فضاء أينشتاين, فضاء ريمان المتناظر, فضاء
ريتشي و ريتشي المتناظر, و نذكر بأهم خواص هذه الفضاءات.
نذكر بأهم المفاهيم و المبرهنات المتعلقة بالبحث, و من ثم
نحدد شروط وجود التحويل التوافقي في فضاءات كيلير المكافئية السوية
و نحدد عدد وسطاء الحركة في هذه التحويلات.
نعرّف فضاء ساساكي المكافئي و نجد الشرط اللازم و الكافي لوجود تطبيق جيوديزي
بين فضائي ساساكي، ثمّ نثبت أن الشرط اللازم و الكافي لوجود تطبيق جيوديزي بين
فضائي ساساكي ذو البنية الواحدة هو أن يكونا متقايسين.
ثمّ نصل إلى نتيجة أنه إذا وجد تطبيق جيوديزي