في هذا البحث سوف :
-1 نعرف فضاء ريمان , التطبيق المتزاوي , فضاء أينشتاين , فضاء أينشتاين
المتكرر ريتشيا.
-2 دراسة التطبيق المتزوي بين فضاءات أينشتاين الموافقة لسطح سوي , و
المتكررة ريتشيا.
in this paper we:
1) defined Riemannian space , conformal mapping, Einstein
space , Ricci recurrent Einstein space.
2) study conformal mapping between Einstein spaces
corresponding flat surface, and Ricci recurrent Einstein
space.
المراجع المستخدمة
(Brinkmann, H.W. Einstein spaces which mapped conformally on each other. Math. Ann. 94 (1925
(Chepurna, O., Kiosak, V., Mikes, J. Conformal mappings of Riemannian spaces which preserve the Einstein tensor. J. of Appl. Math. Aplimat (in preparation
(Evtushik, L.E.; Kiosak, V.A.; Mikeˇs, J. On mobility of Riemannian spaces respective conformal mappings onto Einstein spaces. Math Russ. (2010) ;⊳ Izv. vuzov (2010). (to appear
نعرف أهم المفاهيم المتعلقة بالبحث:
فضاء ريمان, التطبيق المتزاوي, فضاء أينشتاين, فضاء ريمان المتناظر, فضاء
ريتشي و ريتشي المتناظر, و نذكر بأهم خواص هذه الفضاءات.
ندرس في هذا البحث التطبيقات التوافقية بين -O فضاءات, و نوجد الشروط اللازمة و الكافية لوجود تطبيق توافقي, و نثبت انه لا توجد تطبيقات توافقية غير مبتذلة بين فضاءات -O ذات البنية الواحدة.
ندرس في هذا البحث التطبيقات التوافقية بين نوع خاص من
فضاءات كيلير (الفضاءات التبادلية) و نثبت أنه إذا وجد تطبيق
توافقي بين فضاءات كيلير التبادلية فإن التطبيق يكون تحاكياً.
نعرّف فضاء ساساكي المكافئي و نجد الشرط اللازم و الكافي لوجود تطبيق جيوديزي
بين فضائي ساساكي، ثمّ نثبت أن الشرط اللازم و الكافي لوجود تطبيق جيوديزي بين
فضائي ساساكي ذو البنية الواحدة هو أن يكونا متقايسين.
ثمّ نصل إلى نتيجة أنه إذا وجد تطبيق جيوديزي
نذكر بأهم المفاهيم و المبرهنات المتعلقة بالبحث, و من ثم
نحدد شروط وجود التحويل التوافقي في فضاءات كيلير المكافئية السوية
و نحدد عدد وسطاء الحركة في هذه التحويلات.