نعرف أهم المفاهيم المتعلقة بالبحث:
فضاء ريمان, التطبيق المتزاوي, فضاء أينشتاين, فضاء ريمان المتناظر, فضاء
ريتشي و ريتشي المتناظر, و نذكر بأهم خواص هذه الفضاءات.
in this paper we:
defined Riemannian spaces, conformal mappings, Einstein
spaces, Riemannian symmetric spaces, Ricci spaces and
Ricci symmetric spaces, recall the fundamental properties of
these spaces
المراجع المستخدمة
(Brinkmann, H.W. Einstein spaces which mapped conformally on each other. Math. Ann. 94 (1925
(Chepurna, O., Kiosak, V., Mikes, J. Conformal mappings of Riemannian spaces which preserve the Einstein tensor. J. of Appl. Math. Aplimat (inpreparation
Fedishchenko, S.I. Special conformal mappings of Riemannian spaces. II.Ukrain. Geom. Sb. No. 25, 144, 130-137, 1982
في هذا البحث سوف :
-1 نعرف فضاء ريمان , التطبيق المتزاوي , فضاء أينشتاين , فضاء أينشتاين
المتكرر ريتشيا.
-2 دراسة التطبيق المتزوي بين فضاءات أينشتاين الموافقة لسطح سوي , و
المتكررة ريتشيا.
ندرس في هذا البحث التطبيقات التوافقية بين نوع خاص من
فضاءات كيلير (الفضاءات التبادلية) و نثبت أنه إذا وجد تطبيق
توافقي بين فضاءات كيلير التبادلية فإن التطبيق يكون تحاكياً.
ندرس في هذا البحث التطبيقات التوافقية بين -O فضاءات, و نوجد الشروط اللازمة و الكافية لوجود تطبيق توافقي, و نثبت انه لا توجد تطبيقات توافقية غير مبتذلة بين فضاءات -O ذات البنية الواحدة.
نعرّف فضاء ساساكي المكافئي و نجد الشرط اللازم و الكافي لوجود تطبيق جيوديزي
بين فضائي ساساكي، ثمّ نثبت أن الشرط اللازم و الكافي لوجود تطبيق جيوديزي بين
فضائي ساساكي ذو البنية الواحدة هو أن يكونا متقايسين.
ثمّ نصل إلى نتيجة أنه إذا وجد تطبيق جيوديزي
نذكر بأهم المفاهيم و المبرهنات المتعلقة بالبحث, و من ثم
نحدد شروط وجود التحويل التوافقي في فضاءات كيلير المكافئية السوية
و نحدد عدد وسطاء الحركة في هذه التحويلات.