نعرف فضاء ريمان - باناخ و الفضاء الإقليدي السوي, ثم نوجد الشرط اللازم و الكافي لكي يكون فضاء ريمان - باناخ مزاويا للفضاء الإقليدي, ثم نثبت أن فضاءات ريمان - باناخ ثابتة التقوس مزاوية للفضاء الإقليدي, و أخيرا نوجد محليا القياس في فضاءات ريمان - باناخ ثابتة التقوس.
We define Riemann – Banach space and the space conformal to
the Euclidean planer space, then we create The necessary and
sufficient conditions in order to be Riemann – Banach
space conformal to the Euclidean space, then we prove that
constant- curvature Riemann – Banach spaces which have
are conformal to the Euclidean space. Finally,
we create locally, the measurement in constant curvature
Riemann –Banach spaces.
المراجع المستخدمة
Porikli, F., Tuzel, O., & Meer, P. (2016)- Designing a Boosted Classifier on Riemannian Manifolds. In Riemannian Computing in Computer Vision (pp. 281-301). Springer International Publishing
Anderson, M. T. (2015). Conformal immersions of prescribed mean curvature in R3. Nonlinear Analysis: Theory, Methods & Applications, 114, 142-157
Harandi, M., Basirat, M., & Lovell, B. C. (2016)- Coordinate Coding on the Riemannian Manifold of Symmetric Positive- Definite Matrices for Image Classification. In Riemannian Computing in Computer Vision (pp. 345-361). Springer International Publishing
تستبدل دالة الهدف لحل مسائل الأمثليات الأصغرية غالباً بمتتالية من تقريبات الدوال الملساء و من أشهرها غلاف مورو. في السنوات الأخيرة نظمت المسألة باستخدام مسافة بريغمان مسافة غير مترية ( فهي ليست تناظرية و لاتحقق متراجحة المثلث ) كبديل للمسافة المعتادة
نعرف أهم المفاهيم المتعلقة بالبحث:
فضاء ريمان, التطبيق المتزاوي, فضاء أينشتاين, فضاء ريمان المتناظر, فضاء
ريتشي و ريتشي المتناظر, و نذكر بأهم خواص هذه الفضاءات.
في هذا البحث سوف :
-1 نعرف فضاء ريمان , التطبيق المتزاوي , فضاء أينشتاين , فضاء أينشتاين
المتكرر ريتشيا.
-2 دراسة التطبيق المتزوي بين فضاءات أينشتاين الموافقة لسطح سوي , و
المتكررة ريتشيا.
ندرس في هذا البحث التطبيقات التوافقية بين -O فضاءات, و نوجد الشروط اللازمة و الكافية لوجود تطبيق توافقي, و نثبت انه لا توجد تطبيقات توافقية غير مبتذلة بين فضاءات -O ذات البنية الواحدة.
ندرس في هذا البحث التطبيقات التوافقية بين نوع خاص من
فضاءات كيلير (الفضاءات التبادلية) و نثبت أنه إذا وجد تطبيق
توافقي بين فضاءات كيلير التبادلية فإن التطبيق يكون تحاكياً.