ترغب بنشر مسار تعليمي؟ اضغط هنا

الحل العددي لمعادلة فولتيرا التكاملية الخطية من النوع الثاني ذات النواة الشاذة الضعيفة باستخدام دوال سبلاين غير الحدودية من الدرجة الخامسة

A numerical solution of linear volterra integral equations of Second Kind with weakly singular kernel using the fifth order of non- polynomial spline functions

3064   6   97   0 ( 0 )
 تاريخ النشر 2017
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

سنطبق في هذا العمل طريقة دوال سبلاين غير الحدودية من الدرجة الخامسة لحل معادلة فولتيرا التكاملية الخطية من النوع الثاني ذات النواة الشاذة الضعيفة حيث قمنا بتطبيق أمثلة عددية لتوضيح هذه الطريقة و مقارنة نتائجها مع نتائج طرق عددية أخرى .



المراجع المستخدمة
COLLINS,P.j 2006-Differential and Integral equations. Oxford University Press Inc , New York
DIOGO,T , FORD, N.J , LIMA,P and VALTCHEV,S 2006- Numerical method for a Volterra Integral Equation with Non- Smooth Solutions ,Journal of Computational And Applied Mathematics, pp. 412-423
DIOGO,T , LIMA,P 2008-Superconvergence of collocation methods for a class of weakly singular volterra integral equations ,Journal of Computational And Applied Mathematics, pp. 307-316
قيم البحث

اقرأ أيضاً

يقدم هذا العمل الحل العددي لمسألة القيم الحدية الخطية المعممة من المرتبة الخامسة. تم فيه تحويل مسألة القيم الحدية المذكورة إلى ثلاث مسائل قيم ابتدائية ثم تطبيق الدوال الشرائحية مع أربع نقاط مجمعة إلى مسائل القيم الابتدائية. إن الطريقة الشرائحية المقت رحة تمكننا من إيجاد الحل الشرائحي التقريبي لمسألة القيم الحدية و مشتقاته حتى المرتبة الخامسة. و قد تم اختبار فعالية الطريقة المقترحة باستخدامها لحل أربع مسائل، حيث كانت النتائج التي تم التوصل إليها دقيقة بالمقارنة مع طرائق أخرى.
يُعبَّر عن معظم المسائل العلميَّة و الهندسيَّة بمعادلات تفاضليَّة جزئية خطية و غير خطية، و قد نجد صعوبة في حل مثل هذه المعادلات بالأسلوب التحليلي، لذا فقد حاولنا في هذه المقالة تطبيق طريقة HPM على جملة معادلات جزئية غير خطية.
نقدم في هذا البحث خوارزمية عددية لحل معادلات فولتيرا-فريدهولم اللتكاملية-التفاضلية الخطية باستخدام كثيرات حدود شرائحية من الدرجة التاسعة مع ست نقاط تجميع. يتم تحويل معادلة فولتيرا-فردىولم إلى جملة معادلات تفاضلية خطية من المرتبة الأولى والتي نحليا بتطبيق كثيرات الحدود الشرائحية ومشتقاتها عليها. تم إثبات تقارب التقنية المقترحة عندما تم تطبيقيا على المسألة المذكورة. ولاختبار فعالية الطريقة ودقتها تم حل مسألتي اختبار حيث أظهرت مقارنات نتائجنا مع نتائج أخرى مأخوذة من مراجع حديثة إلى الدقة العالية التي قدمتها التقريبات الشرائحية.
يهدف هذا البحث إلى دراسة طرائق حل المعادلة الفرقية الخطية من المرتبة الثانية بأمثال متغيرة. و سيتم عرض طريقة حلها و ذلك من خلال مبرهنتين مع تقديم إثباتهما و لن ننس التطرق إلى بعض التعاريف و المفاهيم الأساسية اللازمة لذلك و عرض بعض التطبيقات عليهما.
تركز بحثنا في هذه المقالة على دراسة طريقتي ADM – VIM و استخداميما لحل بعض النماذج الهامة من المعادلات التفاضلية الجزئية الخطية و غير الخطية مثل ( معادلة كلاين غوردن غير الخطية – معادلة الموجة غير الخطية – معادلة التلغراف الخطية – معادلة انتشار الح رارة غير الخطية )، و قد حصلنا على الحل الفعلي للمسائل المدروسة من أجل تكرارات متعددة، و قمنا بإجراء دراسة عددية عند تكرار محدد ثم قارنا الطريقتين السابقتين مع الحل الفعلي أثناء حلنا لمعادلة التلغراف و معادلة الحرارة غير الخطية، و أيضا أجرينا مقارنة بين الحل الفعلي و الحل بطريقة ADM (من أجل تكرار محدد ) لمعادلة كلاين غوردن غير الخطية، ثم قارنا بين الحل الفعلي و الحل بطريقة VIM لمعادلة الموجة غير الخطية، و في جميع الحالات حصلنا على نتائج دقيقة و فعالة أثبتت دقة و قوة و فعالية الطريقتين المدروستين .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا