الهدف من هذا البحث هو دراسة و تعميم بعض النتائج المتعلقة بالاستمرار التام لمؤثر أوريسون بمتحولين, و المعطى بمعادلة تكاملية على مجموعة قيوسة وفق قياس لوبيغ, من خلال دراسة التقارب المنتظم لمتتالية من مؤثرات أوريسون , المعطاة بالتوابع , و ذلك باستخدام التقارب بالقياس من خلال الإعتماد على شرط كاراثيودوري للمجموعات القيوسة.
The aim of this paper is to study and generalize some results that related by the complete continuity of the urysohn.s operator of two variables on a set on which a lebesgue meagure is defined and study uniform convergence sequence of the urysohn .s.operators that defined by functions using convergence meager Depending on caratheodory condition of measurable sets .
المراجع المستخدمة
BIRNBAUM, Z .and ORLICZ,W. uber die verallgemeierung des Begriffes der Zueinander konjugierten potenze , Studia Mathematica , 1-67; Zentralblatt , Vol.3 , 1931, p.252
D.L.COHN :,Measure Theory ,Birk hauser ,Boston,1980 , p.138-212
D.GIRELA and J.A.PELAEZ, Carlson Measures ,multipliers and integration operators for space of Dirichlet Type,J.Anal.Math .Malaga spain, 2006,p.1-15
الهدف من هذا البحث هو دراسة و تعميم بعض النتائج المتعلقة بتراص و استمرار مؤثر أوريسون بمتحولـــين المعرف بمعادلة تكاملية على مجموعة معرف عليها قياس لوبيغ في فضاء أورليشتس المزود بالنظيم و المحـــقق لشروط معينــة, و ثمً دراسة التقــارب المنتظم لمتت
الهدف من هذا البحث مناقشة الشروط اللازمة و الكافية لاستمرارية المؤثر التكاملي الخطي في فضاء أورليتش على مجموعة متراصة لدوال محققة لشروط قياس لوبيغ في الفضاء الاقليدي المنتهي البعد و استخدام شروط دالة القياس المستمرة اعتماد على تعريفي تابع و النظيم في
ندرس في هذا البحث فضاء الطاقة الموافق لمؤثر هرميت التفاضلي , و نبين أنه فضاء هيلبرت مع جداء داخلي مناسب، و هو فضاء جزئي من الفضاء .
ثم ندرس قوى هذا المؤثر , حيث نشكل بالاعتماد على النظرية الطيفية , و نبين أن المؤثر له خواص مشابهة للمؤثر من أجل عدد
نرمز نظرياً لثخانة البيان G ب( Φ(G وتعرف ثخانة البيان بأنها العدد الأصغري من البيانات الجزئية المسطحة(المستوية ) والتي نستطيع الحصول عليها من تحميل البيان الأصلي G والبيان المسطح هو كل بيان يمكن إعادة رسمه في المستوي بدون أن تتقاطع أضلاعه (خطوط التو
نتناول في هذا العمل دراسة مؤشر اللاتوقف (index Nonstationary) لمتتاليات في فضاء هيلبرت.
اعتماداً على مصفوفة فروق الارتبـاط لمتتاليـة متجهيـة، و مـن أجـل المتتاليـات الممثلـة تجـذيرياً
(Representable Evolutionary) توصلنا إلى الشرط اللازم و الكـافي ل