الهدف من هذا البحث هو دراسة و تعميم بعض النتائج المتعلقة بتراص و استمرار مؤثر أوريسون بمتحولـــين المعرف بمعادلة تكاملية على مجموعة معرف عليها قياس لوبيغ في فضاء أورليشتس المزود بالنظيم و المحـــقق لشروط معينــة, و ثمً دراسة التقــارب المنتظم لمتتـالية من مؤثرات أوريسون المعرفة بالتوابـــع و ذلك باستخدام التقارب بالقياس من خلال الاعتماد على شرط كاراثيودوري للمجموعات القيوسة و الحصول على نتائج مماثلة لشروط الاستمرار و التراص لمؤثر اختياري يحققها مؤثر أوريسون.
The aim of this paper is to study and generalize some results that related by compactness and continuity of Urysohn.S operator of two variables on a set on which a lebesgue measure is defined and using the norm that achieved some certain conditions and study uniform convergence sequence of Urysohn.S. operators that defined by functions using conver -gence In measure depending on Caratheodory condition of measurable sets and obtain similar results related by continuity and compactness conditions of optional operator that achieved Urysohn .S operator.
المراجع المستخدمة
(Luxemburg W . A.J. and Zaanen A . C. :Some remarks on Banach function space , Nederl . Akad .Wetensch.Proc.ser.A.59-Indag.Math.56( 1984
(D.L.Cohn :,Measure Theory ,Birk hauser ,Boston,p.138-212. (1980
(D.Girela and J.A.P elaez:, Carlson Measures ,multipliers and integration operators for space of Dirichlet Type,J.Anal.Math .Malaga spain,1-15. ( 2006
الهدف من هذا البحث هو دراسة و تعميم بعض النتائج المتعلقة بالاستمرار التام لمؤثر أوريسون بمتحولين, و المعطى بمعادلة تكاملية على مجموعة قيوسة وفق قياس لوبيغ, من خلال دراسة التقارب المنتظم لمتتالية من مؤثرات أوريسون , المعطاة بالتوابع , و ذلك باستخدام ا
ندرس في هذا البحث فضاء الطاقة الموافق لمؤثر هرميت التفاضلي , و نبين أنه فضاء هيلبرت مع جداء داخلي مناسب، و هو فضاء جزئي من الفضاء .
ثم ندرس قوى هذا المؤثر , حيث نشكل بالاعتماد على النظرية الطيفية , و نبين أن المؤثر له خواص مشابهة للمؤثر من أجل عدد
الهدف من هذا البحث مناقشة الشروط اللازمة و الكافية لاستمرارية المؤثر التكاملي الخطي في فضاء أورليتش على مجموعة متراصة لدوال محققة لشروط قياس لوبيغ في الفضاء الاقليدي المنتهي البعد و استخدام شروط دالة القياس المستمرة اعتماد على تعريفي تابع و النظيم في
نتناول في هذا العمل دراسة مؤشر اللاتوقف (index Nonstationary) لمتتاليات في فضاء هيلبرت.
اعتماداً على مصفوفة فروق الارتبـاط لمتتاليـة متجهيـة، و مـن أجـل المتتاليـات الممثلـة تجـذيرياً
(Representable Evolutionary) توصلنا إلى الشرط اللازم و الكـافي ل
نقوم في هذا البحث بإثبات صحة المتراجحة
علما بأن للدالة في الفضاء ، و معامل الاستمرار من الدرجة الثانية.
كما نقوم بإثبات صحة المتراجحة : من أجل أي دالة تتحقق المتراجحة
و تم اثبات صحة المبرهنة : من أجل أي عدد طبيعي تتحقق المساواة
حيث أن أحد الأقطار المعرفة في البحث