الهدف من هذا البحث مناقشة الشروط اللازمة و الكافية لاستمرارية المؤثر التكاملي الخطي في فضاء أورليتش على مجموعة متراصة لدوال محققة لشروط قياس لوبيغ في الفضاء الاقليدي المنتهي البعد و استخدام شروط دالة القياس المستمرة اعتماد على تعريفي تابع و النظيم في إثبات صحة بعض المبرهنات في فضاءي هلبرت ,باناخ. ثم تم التطرق إلى مفهوم الـ تابع المتتم لـ تابع معطى و ذلك بهدف مناقشة شروط الاستمرار التام لنواة المؤثـر التكاملي الخطي المدروس. و تحقيق صفات التراص على مجموعة دوال في فضاء أورليتش و اختيار أفضل تقريب لذلك المؤثر التكاملي الخطي. و أخيراً تم أجراء مقارنة بين الاستمرار التام و التقارب الضعيف للمتتاليات الدالية في فضاء جزئي من فضاء أورليتش.
The aim of this paper is to discuss the necessary and sufficient conditions for the continuity of operator linear integral in Orlicz space on a compact set of functions realized with the terms of a lebegue measure of the Euclidean space ending dimension and the use of the terms continuous measurement N-function definition continued N-function some theorems in Hilbert, Banach spaces. Then the research touched on the concept of the continued complementary N-function given, in order to discuss the terms of a continuing full for Integrative operator linear kernel which is studied, and to achieve qualities compact a functions set in W. Orlicz space and choose the best approximation for linear integrative operators. Finally a comparison is carried out between continuing full and weak convergence of the functional sequences in subspace of W. Orlicz space.
المراجع المستخدمة
(K Kuratowski, A Half Century Of Polish Mathematics (Warsaw, 1980
(H Steinhaus, Between Spirit And Matter Mediate Mathematics (Polish) (Warsaw- Wroclaw, 2000
(Wladyslaw Orlicz Collected Papers I, Ii (Warsaw, 1988
الهدف من هذا البحث هو دراسة و تعميم بعض النتائج المتعلقة بالاستمرار التام لمؤثر أوريسون بمتحولين, و المعطى بمعادلة تكاملية على مجموعة قيوسة وفق قياس لوبيغ, من خلال دراسة التقارب المنتظم لمتتالية من مؤثرات أوريسون , المعطاة بالتوابع , و ذلك باستخدام ا
نقوم في هذا البحث بإثبات صحة المتراجحة
علما بأن للدالة في الفضاء ، و معامل الاستمرار من الدرجة الثانية.
كما نقوم بإثبات صحة المتراجحة : من أجل أي دالة تتحقق المتراجحة
و تم اثبات صحة المبرهنة : من أجل أي عدد طبيعي تتحقق المساواة
حيث أن أحد الأقطار المعرفة في البحث
تعد حلقة المؤثرات الخطية لفضاء متجهي، و لاتزال، ملهماً لعدد كبير من الرياضين
عموماً و الجبريين خصوصاً في إدخال العديد من المفاهيم الجديدة في الجبر و بشكل
خاص في نظرية الحلقات. و في هذا المجال أثبت I Kaplanskyالمبرهنة الآتية: "حلقة
المؤثرات الخطية
الهدف من هذا البحث هو دراسة و تعميم بعض النتائج المتعلقة بتراص و استمرار مؤثر أوريسون بمتحولـــين المعرف بمعادلة تكاملية على مجموعة معرف عليها قياس لوبيغ في فضاء أورليشتس المزود بالنظيم و المحـــقق لشروط معينــة, و ثمً دراسة التقــارب المنتظم لمتت
يقدم هذا البحث طريقة معينة لتحديد مستقرات الداليات الخطية في الأسرة C, المعروفة بأسرة اتيودوري ،(Caratheodory) و هي أسرة الدوال التحليلية في القرص الواحدي ذات القسم الحقيقي الموجب، و التي تحقق الشرط f(0) = 1.