ينظر هذا البحث في سرعة الإفلات في حقل جاذبيّة توزيعة ماديّة محدودة , و ما يستلزم ذلك من النّظر في قانون نيوتن في الجاذبيّة, و في متّجه حقل الجاذبيّة لتوزيعة ماديّة محدودة في نقطة معيّنة, و في دالّة الكمون و الطّاقة الكامنة, حيث أثبتنا أنّ الطّاقة الكامنة في اللانهاية معدومة , و استلزم البحث أيضا دراسة تابع هاملتون, و أوجدنا سرعة إفلات نقطة ماديّة من سطح كرة إنْ كانت حركة النّقطة الماديّة شاقوليّة, أو كانت حركة النّقطة الماديّة أفقيّة ,أو كانت حركة النّقطة مائلة, و أوجدنا سرعة إفلات نقطة ماديّة من قرص في
الحالتين الشاقوليّة و المائلة, و انتهى البحث إلى إيجاد سرعة إفلات نقطة ماديّة من حلقة في الحالتين الشاقوليّة و المائلة, و تبين في النهاية أنّ سرعة الافلات من الحلقة تتطابق مع تلك التي نحصل عليها في حالة الكرة.
This paper discusses the escape velocity for a limited material
distribution in a gravity field. This requeres examining the Newton’s
law of gravitation , the gravitational field vector of a limited material
distribution in a specific point and potential function togother with
the potential energy.
In paper, have proved that potential energy vanished in infinity . This
requires also examining Hamilton’s function then we have found the
escape velocity of a material point from a sphere’s surface ,when the
motion of the material point is vertical , horizontal or oblique .
We found the escape velocity for a material point from a disk in the
vertical and oblique cases.
In paper, we also find out the escape velocity from a ring in both
vertical and oblique cases . It is appeared that the escape velocity
from the ring identifies with that we get from the sphere case.
المراجع المستخدمة
M.L.Boas,Mathematical methods in Physical Sciences,3rd edition, Wiley ,2006
Michael Fowler, University of Virginia, Physics 152 Notes, May, 2007
K. Abdullah, Propriétés du système séculaire, , thèse de doctorat de l'Observatoire de Paris, Paris 2001
ندرس في هذا البحث حقل جاذبية الذي تولده قطعة مستقيمة مادية حولها. تطرقنا في البداية لمفهوم حقل جاذبية الذي يولده منحنٍ كيفي. يتبين أن هذا الحقل يعتمد على مفهوم الكتلة الخطية، و يرتبط مباشرةً ببعد الموقع الذي نحسب الحقل فيه عن مماسات ذلك المنحني، وليس
درسنا في هذا البحث حقل الجاذبية الذي تولده قطع مستقيمة مادية حولها. تطرقنا في البداية لحساب الحقل خارج حامل القطعة المادية، أو على حاملها، ثم تطرقنا للحقل الذاتي. درسنا أيضاً قيمة هذا الحقل في النقط الخاصة.
درسنا أيضاً الحقل الذي تولده مجموعة من الق
تعد الشذوذات بشكل عام من الموضوعات المهمة في الهندسة الجبرية و الرياضـيات التطبيقيـة.
و منها البسيطة أو الشذوذات من النمط ADE التي لفتت الانتباه لكونها ظهـرت بـشكل منفـصل فـي
مجالات مختلفة من التطبيقات العلمية و تعود التسمية لثلاثة أشكال مرمزة بـال
إن التطور الحالي في نظام التموضع الجغرافي العالمي و تقنيات رصد الأقمار الصناعية و طرق المعالجة الرياضية الحاصلة خلال الثلاثين عاما الأخيرة أدى إلى ثورة حقيقية في تطوير نماذج حقول الجاذبية الأرضية. بالإضافة إلى ذلك فإن زيادة نسبة المناطق المغطاة بقياس
ندرس في هذا البحث حقل الجاذبية الذي يولده نوع خاص من المنحنيات المادية المتجانسة، ندعوها بالمنحنيات المحيطة. الصفة المميزة لهذه المنحنيات هي ارتباط كل منها بدائرة و احاطته بها، أو بقوسٍ منها، وفق معناً محدد.
يتكون المنحني المحيطي من أقواس دائرة، و ق