ندرس في هذا البحث حقل جاذبية الذي تولده قطعة مستقيمة مادية حولها. تطرقنا في البداية لمفهوم حقل جاذبية الذي يولده منحنٍ كيفي. يتبين أن هذا الحقل يعتمد على مفهوم الكتلة الخطية، و يرتبط مباشرةً ببعد الموقع الذي نحسب الحقل فيه عن مماسات ذلك المنحني، وليس عن المنحني نفسه.
القطعة المستقيمة المادية هي حالة خاصة من المنحنيات المادية، تتميز بانطباق جميع مماساتها مما يسمح بتبسيط الحسابات، و ايجاد صيغة مبسطة للحقل. نختم بحثنا بمقارنة حقل القطعة المستقيمة المادية، بحقل قوس دائري مناسب، حيث نستنتج تساويهما.
لقد تبيّن في النهاية، على عكس ما هو متوقع، أنّ حقل قطعة مستقيمة مادية يتناسب عكساً مع البعد عن حامل تلك القطعة، و ليس مع مربع ذلك البعد.
In this search, we study the gravitational field engendered by a
material segment around itself. In the beginning, we discuss the
concept of the gravitational field generated by arbitrary curve. It turns out
that this field depends on the concept of linear mass, and is directly relate to the distance of the position, to which we calculate the field from the tangents of curve, and not from the curve itself.
Material segment is a special case of material curves, and characterized by the confusability of all its tangents, that allow simplify the calculations, and find a simplified formula of the field. We end our research by comparing the field of material segment, with a field of appropriate circular arc.
Contrary to what it is expected, it appear in the end that the field of material segment is inversely proportional to the distance from that segment, and not to the square of distance
المراجع المستخدمة
WESTFALL Richard, « Newton », Figures de la science, Flammarion, Paris, 1994
Galileo Galilei, Dialogue sur les deux grands systèmes du monde, Paris, Seuil, 1992
K. Abdullah, Propriétés du système séculaire, thèse de doctorat de l'Observatoire de Paris, Paris 2001
K. Abdullah, Développement réduit de la fonction perturbatrice, C. R. Acad. Sci. Paris, t.332, Série 1 (2001) p. 541-544
P. Chenevier, Cours de GÉOMÉTRIE, Librairie Hachette, Paris, 1946
درسنا في هذا البحث حقل الجاذبية الذي تولده قطع مستقيمة مادية حولها. تطرقنا في البداية لحساب الحقل خارج حامل القطعة المادية، أو على حاملها، ثم تطرقنا للحقل الذاتي. درسنا أيضاً قيمة هذا الحقل في النقط الخاصة.
درسنا أيضاً الحقل الذي تولده مجموعة من الق
ينظر هذا البحث في سرعة الإفلات في حقل جاذبيّة توزيعة ماديّة محدودة , و ما يستلزم ذلك من النّظر في قانون نيوتن في الجاذبيّة, و في متّجه حقل الجاذبيّة لتوزيعة ماديّة محدودة في نقطة معيّنة, و في دالّة الكمون و الطّاقة الكامنة, حيث أثبتنا أنّ الطّاقة الك
درسنا في هذا البحث حقل الجاذبية الذي يولده مستقيمٌ ماديٌ حوله. بينا بساطة الحقل المدروس، ثم بينا علاقته بقوس نصف الدائرة. ناقشنا أيضاً موضوع جذب مستقيمين متخالفين لبعضهما، و بينا عدم تعلق قوة الجذب المتبادلة بينهما بالمسافة.
درسنا أيضاً الحقل الذي ي
ندرس في هذا البحث حقل الجاذبية الذي يولده نوع خاص من المنحنيات المادية المتجانسة، ندعوها بالمنحنيات المحيطة. الصفة المميزة لهذه المنحنيات هي ارتباط كل منها بدائرة و احاطته بها، أو بقوسٍ منها، وفق معناً محدد.
يتكون المنحني المحيطي من أقواس دائرة، و ق
يتعلق حقل الجاذبية الأرضية بكتلة الأرض و شكلها و المكان الذي يتم فيه القياس, كما تتأثر القيمة
المقاسة في مكان ما بعرض هذا المكان و بسرعة دوران الأرض حول نفسها.
قدمنا في هذا البحث عرضا" نظريا" يربط قيمة حقل الجاذبية بالمقادير المذكورة أعلاه, ثم قمنا