ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكة مخدرة متنوعة من أجل توليد المحادثة المحادثة

Syntactically Diverse Adversarial Network for Knowledge-Grounded Conversation Generation

228   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تميل أنظمة المحادثة التوليدية إلى إنتاج ردود لا معنى لها والأجنحة، والتي تقلل بشكل كبير من تجربة المستخدم. من أجل توليد ردود مفيدة ومتنوعة، اقترحت الدراسات الحديثة المعرفة لتحسين المعلوماتية وتعتمد المتغيرات الكامنة لتعزيز التنوع. ومع ذلك، فإن الاستفادة من المتغيرات الكامنة ستؤدي إلى عدم دقة المعرفة في الاستجابات، ونشر المعرفة الخاطئة ستضلل المسؤولون. لمعالجة هذه المشكلة، نقترح شبكة مخدرة متنوعة من الناحية النحوية (SDAN) لنموذج المحادثة المدرجة المعرفة. يحتوي SDAN على شبكة دلالات هرمية ذات خصومة للحفاظ على التماسك الدلالي، وهي شبكة مدركة للمعرفة لحضور المعرفة الأكثر متعلقة بتحسين المعلومات والشبكة المتغيرة الكامنة النحوية لتوليد ردود متنوعة من الناحية النحوية. بالإضافة إلى ذلك، من أجل زيادة إمكانية التحكم في بناء الجملة، نعتمد التعلم الخصم لإزالة التمثيلات الدلالية والمنظمات. تظهر النتائج التجريبية أن طرازنا لا يمكن أن يؤدي فقط إلى تحقيق استجابات متنوعة ومتنوعة من المعرفة فقط ولكنها تحقق أيضا التوازن بين تحسين التنوع النحوي والحفاظ على دقة المعرفة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

ويعتقد أن وضع العلامات الدلالية الدلالية للمحادثة (CSRL) هي خطوة حاسمة نحو فهم الحوار.ومع ذلك، لا يزال يمثل تحديا كبيرا لمحلل CSRL الحالي للتعامل مع المعلومات الهيكلية للمحادثة.في هذه الورقة، نقدم بنية بسيطة وفعالة ل CSRL التي تهدف إلى معالجة هذه الم شكلة.يعتمد نموذجنا على شبكة الرسم البياني على بنية المحادثة التي تشفصها بشكل صريح لمعلومات مكبر الصوت.نقترح أيضا طريقة تعليمية متعددة المهام لمواصلة تحسين النموذج.تظهر النتائج التجريبية على مجموعات البيانات القياسية أن نموذجنا مع أهداف التدريب المقترحة لدينا تتفوق بشكل كبير على الأساس السابقة.
توليد الاستجابات الإعلامية والمناسبة صعبة ولكنها مهمة لبناء أنظمة الحوار يشبه الإنسان. على الرغم من أن نماذج المحادثة المختلفة المعرفة قد اقترحت، إلا أن هذه النماذج لها قيود في الاستفادة من المعرفة التي تحدث بشكل غير منتظم في بيانات التدريب، ناهيك عن دمج المعرفة غير المرئية في جيل المحادثة. في هذه الورقة، نقترح طريقة تعلم التمثيل المتعصب للكيان (EARL) لإدخال الرسوم البيانية المعرفة لتوليد المحادثة بالمعلومات. على عكس الأساليب التقليدية التي تقترب المعلمة التمثيل المحدد لكل كيان، فإن إيرل يستخدم سياق المحادثات والهيكل العلائقي لرسوم البيان البيئية لمعرفة تمثيل الفئة للكيانات، المعمم لإدماج كيانات غير مرئية في الرسوم البيانية المعرفة في جيل المحادثة. التقييمات التلقائية واليدوية توضح أن طرازنا يمكن أن يولد ردود أكثر إعلامية ومتماسكة وغير طبيعية من النماذج الأساسية.
المحادثات عبر الإنترنت يمكن أن تأخذ في بعض الأحيان دورا للأسوأ، إما بسبب الاختلافات الثقافية المنهجية أو سوء الفهم العرضي أو مجرد خبث.تتوقع الانحراف المتوقع تلقائيا في المحادثات العامة على الإنترنت يوفر فرصة للقيام بالإجراءات المبكرة إلى معتدلة.العمل السابق في هذا الفضاء محدود، وتمديده بعدة طرق.نحن نطبق تشفير اللغة المحددة مسبقا للمهمة، والتي تتفوقت على النهج السابقة.سنقوم بمزيد من التجربة مع تحويل نموذج التدريب للمهمة من ثابت إلى ديناميكي واحد لزيادة الأفق التوقعات.يظهر هذا النهج نتائج مختلطة: في إعداد بيانات عالي الجودة، يمكن تحقيق أفق متوسط متوسط الأطول بتكلفة انخفاض صغير في F1؛في إعداد بيانات منخفضة الجودة، ومع ذلك، فإن التدريب الديناميكي ينشر الضوضاء وهو أمر ضار للغاية للأداء.
يتم إجراء جيل نصي من الرسوم البيانية الدلالية تقليديا مع الطرق الحتمية، والتي تولد وصفا فريدا نظرا رسم بياني للإدخال.ومع ذلك، تعترف مشكلة الجيل مجموعة من النواتج النصية المقبولة، وعرض الاختلاف المعجمي والمنظمات والدلية.لمعالجة هذا الفصل، نقدم مساهمتي ن رئيسيتين.أولا، نقترح نموذج رسم بياني مؤشر استوكاستكي، حيث يتضمن متغير كامنة في نموذج فك الترميز، واستخدامه في مجموعة.ثانيا، لتقييم تنوع الجمل التي تم إنشاؤها، نقترح مقياس التقييم التلقائي الجديد الذي يقيم بشكل مشترك تنوع المخرجات وجودة في إعداد متعدد المراجع.نقيم النماذج على مجموعات بيانات Webnlg باللغة الإنجليزية والروسية، وإظهار مجموعة من نماذج الاستوكاستك تنتج مجموعات متنوعة من الجمل التي تم إنشاؤها أثناء الاستفيؤ بجودة مماثلة لنماذج أحدث من النماذج.
على الرغم من إظهار قدرات محادثة مثيرة تشبه الإنسان بشكل متزايد، غالبا ما تعاني نماذج الحوار الحديثة من التصحيح الواقعي وحلوي المعرفة (الأسطوانة وآخرون، 2020). في هذا العمل، نستكشف استخدام هياكل الاسترجاع العصبي - التي تظهر مؤخرا لتكون فعالة في الجودة المفتوحة QA (لويس وآخرون، 2020B؛ Izacard and Grav، 2020) - للحصول على الحوار المعرفي، مهمة يمكن القول أنها أكثر تحديا لأنها تتطلب الاستئصال بناء على سياق الحوار متعدد الدورات المعقدة وإنشاء ردود متماسكة للمحادثة. نحن ندرس أنواعا مختلفة من الهندسة مع مكونات متعددة - المستردون والراحة، وكشف ترميز التشفير - بهدف تعظيم قابلية الإصلاحية أثناء الاحتفاظ بقدرة المحادثة. نوضح أن أفضل النماذج لدينا تحصل على أداء حديثة في مهام المحادثة المدرجة في المعرفة. تعرض النماذج إمكانات محادثة في المجال المفتوح، وتعميم بفعالية من السيناريوهات غير ضمن بيانات التدريب، وعلى النحو الذي تم التحقق منه من خلال التقييمات البشرية، يقلل بشكل كبير من المشكلة المعروفة من الهلوسة المعرفة في Statbots الحديثة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا