على الرغم من إظهار قدرات محادثة مثيرة تشبه الإنسان بشكل متزايد، غالبا ما تعاني نماذج الحوار الحديثة من التصحيح الواقعي وحلوي المعرفة (الأسطوانة وآخرون، 2020). في هذا العمل، نستكشف استخدام هياكل الاسترجاع العصبي - التي تظهر مؤخرا لتكون فعالة في الجودة المفتوحة QA (لويس وآخرون، 2020B؛ Izacard and Grav، 2020) - للحصول على الحوار المعرفي، مهمة يمكن القول أنها أكثر تحديا لأنها تتطلب الاستئصال بناء على سياق الحوار متعدد الدورات المعقدة وإنشاء ردود متماسكة للمحادثة. نحن ندرس أنواعا مختلفة من الهندسة مع مكونات متعددة - المستردون والراحة، وكشف ترميز التشفير - بهدف تعظيم قابلية الإصلاحية أثناء الاحتفاظ بقدرة المحادثة. نوضح أن أفضل النماذج لدينا تحصل على أداء حديثة في مهام المحادثة المدرجة في المعرفة. تعرض النماذج إمكانات محادثة في المجال المفتوح، وتعميم بفعالية من السيناريوهات غير ضمن بيانات التدريب، وعلى النحو الذي تم التحقق منه من خلال التقييمات البشرية، يقلل بشكل كبير من المشكلة المعروفة من الهلوسة المعرفة في Statbots الحديثة.
Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-the-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.
المراجع المستخدمة
https://aclanthology.org/
في التطبيقات العملية للجدل الدلالي، نريد في كثير من الأحيان تغيير سلوك المحلل بسرعة، مثل تمكينه من التعامل مع الاستعلامات في مجال جديد، أو تغيير تنبؤاتها على بعض الاستفسارات المستهدفة. على الرغم من أنه يمكننا إدخال أمثلة تدريبية جديدة تظهر السلوك الم
أظهرت التقدم المحدد في استخدام مكونات الاسترجاع على مصادر المعرفة الخارجية نتائج رائعة لمجموعة متنوعة من المهام المصب في معالجة اللغة الطبيعية.هنا، نستكشف استخدام مصادر المعرفة الخارجية غير منتهية للصور وتستياؤها المقابلة لتحسين الإجابة على السؤال ال
المحادثات عبر الإنترنت يمكن أن تأخذ في بعض الأحيان دورا للأسوأ، إما بسبب الاختلافات الثقافية المنهجية أو سوء الفهم العرضي أو مجرد خبث.تتوقع الانحراف المتوقع تلقائيا في المحادثات العامة على الإنترنت يوفر فرصة للقيام بالإجراءات المبكرة إلى معتدلة.العمل
تميل أنظمة المحادثة التوليدية إلى إنتاج ردود لا معنى لها والأجنحة، والتي تقلل بشكل كبير من تجربة المستخدم. من أجل توليد ردود مفيدة ومتنوعة، اقترحت الدراسات الحديثة المعرفة لتحسين المعلوماتية وتعتمد المتغيرات الكامنة لتعزيز التنوع. ومع ذلك، فإن الاستف
على الرغم من الأداء الرائع للنماذج التوليدية واسعة النطاق في محادثة مفتوحة، من المعروف أنها أقل عملية لبناء أنظمة محادثة في الوقت الفعلي بسبب ارتفاع الكمون. من ناحية أخرى، يمكن أن تعيد نماذج استرجاع الردود بأشياء أقل بكثير ولكنها تظهر أداء أدنى للنما