ترغب بنشر مسار تعليمي؟ اضغط هنا

التنبؤ الديناميكي من انحراف المحادثة

Dynamic Forecasting of Conversation Derailment

283   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

المحادثات عبر الإنترنت يمكن أن تأخذ في بعض الأحيان دورا للأسوأ، إما بسبب الاختلافات الثقافية المنهجية أو سوء الفهم العرضي أو مجرد خبث.تتوقع الانحراف المتوقع تلقائيا في المحادثات العامة على الإنترنت يوفر فرصة للقيام بالإجراءات المبكرة إلى معتدلة.العمل السابق في هذا الفضاء محدود، وتمديده بعدة طرق.نحن نطبق تشفير اللغة المحددة مسبقا للمهمة، والتي تتفوقت على النهج السابقة.سنقوم بمزيد من التجربة مع تحويل نموذج التدريب للمهمة من ثابت إلى ديناميكي واحد لزيادة الأفق التوقعات.يظهر هذا النهج نتائج مختلطة: في إعداد بيانات عالي الجودة، يمكن تحقيق أفق متوسط متوسط الأطول بتكلفة انخفاض صغير في F1؛في إعداد بيانات منخفضة الجودة، ومع ذلك، فإن التدريب الديناميكي ينشر الضوضاء وهو أمر ضار للغاية للأداء.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تميل أنظمة المحادثة التوليدية إلى إنتاج ردود لا معنى لها والأجنحة، والتي تقلل بشكل كبير من تجربة المستخدم. من أجل توليد ردود مفيدة ومتنوعة، اقترحت الدراسات الحديثة المعرفة لتحسين المعلوماتية وتعتمد المتغيرات الكامنة لتعزيز التنوع. ومع ذلك، فإن الاستف ادة من المتغيرات الكامنة ستؤدي إلى عدم دقة المعرفة في الاستجابات، ونشر المعرفة الخاطئة ستضلل المسؤولون. لمعالجة هذه المشكلة، نقترح شبكة مخدرة متنوعة من الناحية النحوية (SDAN) لنموذج المحادثة المدرجة المعرفة. يحتوي SDAN على شبكة دلالات هرمية ذات خصومة للحفاظ على التماسك الدلالي، وهي شبكة مدركة للمعرفة لحضور المعرفة الأكثر متعلقة بتحسين المعلومات والشبكة المتغيرة الكامنة النحوية لتوليد ردود متنوعة من الناحية النحوية. بالإضافة إلى ذلك، من أجل زيادة إمكانية التحكم في بناء الجملة، نعتمد التعلم الخصم لإزالة التمثيلات الدلالية والمنظمات. تظهر النتائج التجريبية أن طرازنا لا يمكن أن يؤدي فقط إلى تحقيق استجابات متنوعة ومتنوعة من المعرفة فقط ولكنها تحقق أيضا التوازن بين تحسين التنوع النحوي والحفاظ على دقة المعرفة.
على الرغم من إظهار قدرات محادثة مثيرة تشبه الإنسان بشكل متزايد، غالبا ما تعاني نماذج الحوار الحديثة من التصحيح الواقعي وحلوي المعرفة (الأسطوانة وآخرون، 2020). في هذا العمل، نستكشف استخدام هياكل الاسترجاع العصبي - التي تظهر مؤخرا لتكون فعالة في الجودة المفتوحة QA (لويس وآخرون، 2020B؛ Izacard and Grav، 2020) - للحصول على الحوار المعرفي، مهمة يمكن القول أنها أكثر تحديا لأنها تتطلب الاستئصال بناء على سياق الحوار متعدد الدورات المعقدة وإنشاء ردود متماسكة للمحادثة. نحن ندرس أنواعا مختلفة من الهندسة مع مكونات متعددة - المستردون والراحة، وكشف ترميز التشفير - بهدف تعظيم قابلية الإصلاحية أثناء الاحتفاظ بقدرة المحادثة. نوضح أن أفضل النماذج لدينا تحصل على أداء حديثة في مهام المحادثة المدرجة في المعرفة. تعرض النماذج إمكانات محادثة في المجال المفتوح، وتعميم بفعالية من السيناريوهات غير ضمن بيانات التدريب، وعلى النحو الذي تم التحقق منه من خلال التقييمات البشرية، يقلل بشكل كبير من المشكلة المعروفة من الهلوسة المعرفة في Statbots الحديثة.
حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب أهمية هذا المجال من الناحية التطبيقية فإن الكثير من الأعمال البحثية التي جرت ضمنه خلال السنوات الماضية، إضافةً إلى العدد الكبير من النماذج والخوارزميات التي تم اقتراحها في أدب البحث العلمي والتي كان هدفها تحسين كل من الدقة والكفاءة في نمذجة وتوقع السلاسل الزمنية.
البحث الأوجه الديناميكي (DFS)، وهي تقنية تحويل الاستعلام التفاعلي، هي شكل من أشكال نهج استرجاع معلومات الكمبيوتر البشري (HCIR).يتيح للمستخدمين تضييق نتائج البحث لأسفل من خلال جوانب، حيث يتم تحديد تعيين استندات المستندات في وقت التشغيل بناء على سياق ا ستعلام المستخدم بدلا من الفهرسة المسبقة للوجرات بشكل ثابت.في هذه الورقة، نقترح نهج جديد غير مدفوع من أجل توليد الأوجه الديناميكي، أي جوانب متفائلة، التي تحاول توليد أفضل مجموعة فرعية ممكنة من الجوانب، وبالتالي تعظيم المكاسب التراكمية المتوقعة المتوقعة (DCG)، وهو مقياس جودة الترتيب الذي يستخدم ذات صلة متدرجةمقياس.ونحن نوضح أيضا رمز لتوليد مجموعة بيانات تقييم جديدة.من خلال النتائج التجريبية على مجموعة بيانات، نوضح أن نهج DFS المقترح يحسن بشكل كبير تصنيف الوثيقة في نتائج البحث.
تناولت هذه الورقة البحثية دراسة السلوك الديناميكي للحماية من التيار الزائد في خطوط ربط المحطات الريحية مع الشبكة على سلوك أجهزة الحماية المستخدمة ( تيار زائد ) و مقارنة النتائج مع سلوك عمل هذه الحمايات عند الربط مع مولدات عادية . من خلال نتائج النم ذجة و المحاكاة تبين لنا أن وجود المحطة الريحية فرض تغيرات واضحة على بنية نظام القدرة من حيث مناطق الحماية و استجابة أجهزة الحماية لأنواع الأعطال الحاصلة و سبب تأخير في عمل هذه الحمايات.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا