ترغب بنشر مسار تعليمي؟ اضغط هنا

إيرل: توليد محادثة محادثة المعرفة المعرفة مع التعلم التمثيل اللاإرادي

EARL: Informative Knowledge-Grounded Conversation Generation with Entity-Agnostic Representation Learning

278   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

توليد الاستجابات الإعلامية والمناسبة صعبة ولكنها مهمة لبناء أنظمة الحوار يشبه الإنسان. على الرغم من أن نماذج المحادثة المختلفة المعرفة قد اقترحت، إلا أن هذه النماذج لها قيود في الاستفادة من المعرفة التي تحدث بشكل غير منتظم في بيانات التدريب، ناهيك عن دمج المعرفة غير المرئية في جيل المحادثة. في هذه الورقة، نقترح طريقة تعلم التمثيل المتعصب للكيان (EARL) لإدخال الرسوم البيانية المعرفة لتوليد المحادثة بالمعلومات. على عكس الأساليب التقليدية التي تقترب المعلمة التمثيل المحدد لكل كيان، فإن إيرل يستخدم سياق المحادثات والهيكل العلائقي لرسوم البيان البيئية لمعرفة تمثيل الفئة للكيانات، المعمم لإدماج كيانات غير مرئية في الرسوم البيانية المعرفة في جيل المحادثة. التقييمات التلقائية واليدوية توضح أن طرازنا يمكن أن يولد ردود أكثر إعلامية ومتماسكة وغير طبيعية من النماذج الأساسية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تتحول نماذج المحادثة واسعة النطاق إلى الاستفادة من المعرفة الخارجية لتحسين الدقة الواقعية في توليد الاستجابة.بالنظر إلى عدم التعليق على المعرفة الخارجية لعوريا الحوار واسعة النطاق، من المستحسن معرفة اختيار المعرفة وتوليد الاستجابة بطريقة غير منشأة.في هذه الورقة، نقترح أفلاطون كاج (توليد المعرفة المعزز)، ونهج تعليمي غير مخطط له لنمذجة المحادثة المحفوظة على المعرفة الطرفية.لكل سياق حوار، يتم اختيار عناصر المعرفة ذات الصلة من الأعلى وبعد ذلك في توليد الاستجابة المدرجة في المعرفة.يتم تحسين مكونين اختيار المعرفة وتوليد الاستجابة بشكل مشترك وفعال تحت هدف متوازن.النتائج التجريبية على اثنين من مجموعات البيانات المتاحة للجمهور التحقق من تفوق أفلاطون كاج.
تعد بيانات المعرفة هائلة وواسعة الانتشار في العالم الحقيقي، والتي يمكن أن تكون بمثابة مصادر خارجية جيدة لإثراء المحادثات. ومع ذلك، في محادثات المعرفة، لا تزال النماذج الحالية تفتقر إلى السيطرة الجميلة على اختيار المعرفة والتكامل مع الحوارات، والتي تؤ دي أخيرا إلى مشاكل توليد الاستجابة غير ذات الصلة المعرفة: 1) اختيار المعرفة يعتمد فقط على سياق الحوار، وتجاهل انتقالات المعرفة المتأصلة جنبا إلى جنب مع تدفقات المحادثة؛ 2) غالبا ما تناسب النماذج أثناء التدريب، مما يؤدي إلى استجابة غير متماسكة من خلال الإشارة إلى الرموز غير المرتبطة من محتوى المعرفة المحددة في مرحلة الاختبار؛ 3) على الرغم من أن الاستجابة يتم إنشاؤها على تاريخ الحوار والمعرفة، إلا أن النماذج غالبا ما تميل إلى التغاضي عن المعرفة المحددة، وبالتالي يولد استجابة المعرفة غير ذات الصلة. لمعالجة هذه المشكلات، اقترحنا نموذجي صراحة انتقال المعرفة في محادثات متعددة الدورانية المتسلسلة عن طريق تجريد المعرفة إلى علامات موضوعية. بالإضافة إلى ذلك، لاستخدام المعرفة المختارة بالكامل في عملية التوليد، نقترح ما قبل التدريب مولد الاستجابة على علم المعرفة لدفع المزيد من الاهتمام على المعرفة المحددة. على وجه الخصوص، يقوم نموذج انتقال المعرفة المتسلسل المزود بمولد استجابة مدروس مدرسي مسبقا (SKT-KG) بتصوير انتقال المعرفة الرفيع المستوى ويستخدم بالكامل بيانات المعرفة المحدودة. تشير النتائج التجريبية على كل من معايير الحوار المنظم وغير المنظمة إلى المعرفة المعرفة إلى أن نموذجنا يحقق أداء أفضل على النماذج الأساسية.
تقنيات تعزيز الرفاهية والرعاية الصحية والرصد هي في ارتفاع. ومع ذلك، على الرغم من اهتمام المرضى، تعاني هذه التقنيات من اعتماد منخفض. فرضية واحدة لهذا التبني المحدود هو فقدان التفاعل البشري هو أمر أساسي لقاءات الطبيب المريض. في هذه الورقة، نسعى إلى معا لجة هذا القيد من خلال وكيل محادثة يعتمد جانب واحد من تفاعلات الطبيب الواحد في شخصيا: صورة شخصية بشرية لتسهيل الإجابة على الأسئلة الطبية. هذا أقرب إلى سيناريو شخصيا حيث قد يشير الطبيب إلى جسم الإنسان أو قد يشير المريض إلى جسدهم للتعبير عن شروطهم. بالإضافة إلى ذلك، يحتوي وكيلنا على أوضاع متعددة التفاعل، قد تعطي المزيد من الخيارات للمريض لاستخدام الوكيل، وليس فقط للمسألة الطبية الإجابة، ولكن أيضا للانخراط في محادثات حول الموضوعات العامة والأحداث الحالية. كل من الصورة الرمزية، ويمكن أن تساعد أوضاع التفاعل المتعددة في تحسين الالتزام. نقدم نظرة عامة رفيعة المستوى على تصميم وكيلنا، ماري بوت الرفاهية. نحن نبلغ أيضا عن تفاصيل التنفيذ من النموذج الأولي المبكر لدينا، وتقديم النتائج الأولية.
تهدف توليد الصياغة الموجهة إلى Exemplar (EGPG) إلى توليد جملة مستهدفة تتوافق مع أسلوب Exemplar المحدد أثناء توسيع نطاق معلومات المحتوى من الجملة المصدر. في هذه الورقة، نقترح طريقة جديدة بهدف تعلم تمثيل أفضل للنمط والمحتوى. تحفز هذه الطريقة بشكل أساسي النجاح الأخير للتعلم المقاوم للتناقض التي أثبتت قوتها في مهام استخراج ميزة غير مدفوعة. تتمثل الفكرة في تصميم خسائرتين متباينتين فيما يتعلق بالمحتوى والأسلوب من خلال النظر في خصائص المشكلة أثناء التدريب. إحدى الممتلكات هي أن الجملة المستهدفة تشترك في نفس المحتوى مع جملة المصدر، والخصائص الثانية هي أن الجملة المستهدفة تشارك نفس النمط مع Exemplar. يتم دمج هذين الخسائرتين للتناقض في نموذج فك التشفير العام. تثبت التجارب على مجموعة بيانات اثنين، وهي QQP-Pos و Paranmt، فعالية خسائرنا القاطعة المقترحة.
كانت جودة تلخيص الجماعة لديها تحسينات كبيرة منذ تقنيات محاكاة اللغة الأخيرة.ومع ذلك، هناك حاليا نقص في مجموعات البيانات للاحتياجات المتزايدة لتطبيقات تلخيص المحادثة.وبالتالي نحن جمعنا منتديات، مجموعة بيانات ملخصة محادثة متنوعة وعالية الجودة مع ملخصات مكتوبة بشرية.تتم جمع المحادثات في DiversionMum DataSet من مجموعة واسعة من منتديات الإنترنت.لجعل مجموعة البيانات قابلة للتوسيع بسهولة، نقوم أيضا بإصدار عملية إنشاء DataSet.تظهر تجاربنا أن النماذج المدربة على Forumsum لديها أفضل صفر - لقدرة على تحويل القليل من الطوابق إلى مجموعات البيانات الأخرى من بيانات ملخصات الدردشة الكبيرة الحالية Samsum.نظهر أيضا أن استخدام Corpus Corpustation للمحدثين يحسن ما قبل التدريب على تحسين جودة نموذج تلخيص الدردشة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا