تعد دول كيان تتبع مهمة معالجة لغات طبيعية تفترض أن تتطلب شرحا بشريا. من أجل تقليل الوقت والنفقات المرتبطة بالتعليق التوضيحي، نقدم طريقة جديدة لاستخراج حالات الكيان تلقائيا، بما في ذلك الموقع والوجود حالة الكيانات، بعد Dalvi et al. (2018) وتاندون وآخرون. (2020). لهذا الغرض، نعتمد في المقام الأول على التمثيل الدلالي الناتج عن حالة محلل الحرف الحرفي الفن (Gung، 2020)، واستخراج الكيانات (مشاركين الأحداث) ودولهم، بناء على المسندات الدلالية للتمثيل الدليلي الذي تم إنشاؤه، وهو في تنسيق المنطق المقترح. للتقييم، استخدمنا Propara (Dalvi et al.، 2018)، وهي مجموعة بيانات لفهم القراءة التي يتم تفاحها مع الدول الكيانية في كل جملة، وتتبع تلك الدول في فقرات النصوص الإجرائية ذات التأليف البشري الطبيعي. بالنظر إلى القيود المقدمة من الطريقة، فإن خصائص شروح DataSet Propara، وأن نظامنا، Lexis، لا تستخدم بيانات التدريب الخاصة بمهام المهام وتعتمد فقط على Verbnet، والنتائج واعدة، وعرض قيمة الموارد المعجمية.
Tracking entity states is a natural language processing task assumed to require human annotation. In order to reduce the time and expenses associated with annotation, we introduce a new method to automatically extract entity states, including location and existence state of entities, following Dalvi et al. (2018) and Tandon et al. (2020). For this purpose, we rely primarily on the semantic representations generated by the state of the art VerbNet parser (Gung, 2020), and extract the entities (event participants) and their states, based on the semantic predicates of the generated VerbNet semantic representation, which is in propositional logic format. For evaluation, we used ProPara (Dalvi et al., 2018), a reading comprehension dataset which is annotated with entity states in each sentence, and tracks those states in paragraphs of natural human-authored procedural texts. Given the presented limitations of the method, the peculiarities of the ProPara dataset annotations, and that our system, Lexis, makes no use of task-specific training data and relies solely on VerbNet, the results are promising, showcasing the value of lexical resources.
المراجع المستخدمة
https://aclanthology.org/