على الرغم من التطورات الحديثة في الدور الدوالي الذي يدفعه ترميز النص المدرب مسبقا مثل بيرت، فإن الأداء يتخلف عند تطبيقه على المسندات لاحظ بشكل غير منتظم أثناء التدريب أو إلى الجمل في مجالات جديدة. في هذا العمل، يمكننا التحقيق في كيفية تحسين أداء وضع العلامات على الدوران المنخفض التردد والبيانات خارج نطاق البيانات باستخدام Verbnet، معجم فعل يضم الأفعال إلى فئات هرمية تستند إلى سلوك النحوية والدلية المشتركة وتحدد التمثيل الدلالي وصف العلاقات بين الحجج. نجد أن فئات Verbnet توفر مستوى فعال من التجريد، وتحسين التعميم على المساكن المنخفض التردد من خلال السماح لهم بالتعلم من الأمثلة التدريبية للندوات الأخرى المنتمدة إلى نفس الفصل. نجد أيضا أن التدريب المشترك لعلامات الدور الحرفية والأزهار المسند للفئات الحرفية للأفعال البسيطة يؤدي إلى تحسينات في كلا المهام، مما يدعم بشكل طبيعي استخراج التمثيلات الدلالية في فيربيت.
Despite recent advances in semantic role labeling propelled by pre-trained text encoders like BERT, performance lags behind when applied to predicates observed infrequently during training or to sentences in new domains. In this work, we investigate how role labeling performance on low-frequency predicates and out-of-domain data can be further improved by using VerbNet, a verb lexicon that groups verbs into hierarchical classes based on shared syntactic and semantic behavior and defines semantic representations describing relations between arguments. We find that VerbNet classes provide an effective level of abstraction, improving generalization on low-frequency predicates by allowing them to learn from the training examples of other predicates belonging to the same class. We also find that joint training of VerbNet role labeling and predicate disambiguation of VerbNet classes for polysemous verbs leads to improvements in both tasks, naturally supporting the extraction of VerbNet's semantic representations.
المراجع المستخدمة
https://aclanthology.org/
تعد دول كيان تتبع مهمة معالجة لغات طبيعية تفترض أن تتطلب شرحا بشريا. من أجل تقليل الوقت والنفقات المرتبطة بالتعليق التوضيحي، نقدم طريقة جديدة لاستخراج حالات الكيان تلقائيا، بما في ذلك الموقع والوجود حالة الكيانات، بعد Dalvi et al. (2018) وتاندون وآخر
المحللون الدلالي الإطار يتوقعون تقليديا التنبؤات والأطر والأدوار الدلالية في ترتيب ثابت.تستكشف هذه الورقة مشكلة الدجاج أو البيض للمشكلة بين هذه المكونات نظريا ومن الناحية النظرية.نقدم بنية تسلسل تسلسل تستند إلى بيرت مرنة تسمح بتنبؤ الإطارات والأدوار
إن الانتعاش الدقيق لهيكل الوسائد الواسع من تحليل الاعتماد العالمي (UD) هو أساسي لمهام المصب مثل استخراج الأدوار الدلالية أو تمثيلات الأحداث. تقدم هذه الدراسة على المستحسن، تصنيف التسلسل الهرمي لعلاقات التبعية المستدلة الموجودة داخل تحليل UD. بمثابة د
أحد الجوانب المركزية لنماذج اللغة السياقية هو أنه ينبغي أن يكون قادرا على التمييز بين معنى الكلمات الغامضة من قبل سياقاتهم. في هذه الورقة، نقوم بالتحقيق في مدى تشكيلات الكلمات السياقية التي تشكل تعدد التعدد المعني بالضمان التقليدي من Polysemy ومجهلي.
تقرر ما إذا كانت كلمة غامضة من الناحية الدلوية مجهبة أو polysemous تعادل إنشاء ما إذا كان لديه أي زوج من الحواس غير المرتبط بهليا.نقدم طرق جديدة لهذه المهمة التي تستفيد من المعلومات من الموارد المعجمية متعددة اللغات.نحن نثبت رسميا الخصائص النظرية الت