في هذه الورقة، نقدم نتائج تجاربنا المتعلقة بالأداء الصفر - اللغات اللغات في المحلل الدلالي لحكم Perin إلى الرسم البياني. طبقنا طراز PTG المدربين باستخدام محلل Perin على جريدة 740k-Token Czech إلى الهنغارية. قمنا بتقييم أداء المحلل المحلل باستخدام أداة التقييم الرسمية للمهمة المشتركة MRP 2020. تم إنشاء الشروح الهنغارية القياسية الذهبية عن طريق التصحيح اليدوي لإخراج المحلل في أعقاب دليل الشرح للمستوى Tectogrammatical من TreeBank TreeBank براغ. ومع ذلك، فإن نموذج إنجليزي مدرب على كوربس صحيفة إنجليزية أكبر مليونا متاحا، وجدنا أن النموذج التشيكي أدى بشكل كبير على المدخلات الهنغارية بسبب حقيقة أن الهنغاري يشبه بشكل أكثر تشبه التشيكية من الإنجليزية. لقد وجدنا أن التحويل الصفرية لقطة بمعنى PTG يعنى تمثيل عبر اللغات غير البعيدة النموذجية باستخدام نموذج محلل عصبي يعتمد على نموذج لغة سياسي متعدد اللغات يتبعه تصحيح يدوي من قبل خبراء اللغاتين هو سيناريو قابل للتطبيق.
In this paper, we present the results of our experiments concerning the zero-shot cross-lingual performance of the PERIN sentence-to-graph semantic parser. We applied the PTG model trained using the PERIN parser on a 740k-token Czech newspaper corpus to Hungarian. We evaluated the performance of the parser using the official evaluation tool of the MRP 2020 shared task. The gold standard Hungarian annotation was created by manual correction of the output of the parser following the annotation manual of the tectogrammatical level of the Prague Dependency Treebank. An English model trained on a larger one-million-token English newspaper corpus is also available, however, we found that the Czech model performed significantly better on Hungarian input due to the fact that Hungarian is typologically more similar to Czech than to English. We have found that zero-shot transfer of the PTG meaning representation across typologically not-too-distant languages using a neural parser model based on a multilingual contextual language model followed by a manual correction by linguist experts seems to be a viable scenario.
المراجع المستخدمة
https://aclanthology.org/
غالبا ما يتطلب تدريب نماذج NLP كميات كبيرة من بيانات التدريب المسمى، مما يجعل من الصعب توسيع النماذج الحالية لغات جديدة.في حين تعتمد Transfer-Transfer عبر اللغات الصفرية على تضييق كلمة متعددة اللغات لتطبيق نموذج تدرب على لغة واحدة لآخر، فإن Yarowski
نقدم نظاما للصفر بالرصاص لغة هجومية عبر اللغات وتصنيف الكلام الكراهية.تم تدريب النظام على مجموعات البيانات الإنجليزية واختباره في مهمة اكتشاف محتوى خطاب الكراهية والوسائط الاجتماعية الهجومية في عدد من اللغات دون أي تدريب إضافي.تظهر التجارب قدرة رائعة
حققت نماذج متعددة اللغات المدربة مسبقا أداء ملحوظا على تعلم التحويل عبر اللغات.تم تدريب بعض النماذج متعددة اللغات مثل Mbert، مدربة مسبقا على Corpora غير المسبق، وبالتالي لا يمكن تضمين تضمينات لغات مختلفة في النماذج بشكل جيد للغاية.في هذه الورقة، نهدف
تشفير لغة متعددة اللغات المدربة مسبقا، مثل Bert متعدد اللغات و XLM-R، إظهار إمكانات كبيرة للتحويل الصفر - عبر اللغات. ومع ذلك، فإن هذه اللوائح متعددة اللغات لا تحيي بالتحديد الكلمات والعبارات عبر اللغات. على وجه الخصوص، يتطلب محاذاة التعلم في مساحة ا
حققت نماذج التضمين السياقية المدربة مسبقا متعددة اللغات (Devlin et al.، 2019) أداء مثير للإعجاب على مهام نقل اللغات الصفرية.من خلال إيجاد استراتيجية ضبط الدقيقة الأكثر فعالية لضبط هذه النماذج على لغات الموارد عالية الموارد بحيث تقوم بتحويلاتها جيدا ل