تهدف هذه الورقة إلى وصف النهج الذي اعتدنا عليه اكتشاف خطاب الأمل في مجموعة بيانات Hopeiedi.جربنا مع نهجين.في النهج الأول، استخدمنا ادارة سياقية لتدريب المصنفات باستخدام الانحدار اللوجستي، والغابات العشوائية، و SVM، و LSTM.النهج الثاني المعني باستخدام فرقة التصويت للأغلبية من 11 نماذج تم الحصول عليها عن طريق نماذج محولات محول مدربة مسبقا (بيرت، ألبرت، روبرتا، Inderbert) بعد إضافة طبقة إخراج.وجدنا أن النهج الثاني كان متفوقا على اللغة الإنجليزية والتاميل والمالايالامية.حصل حلنا على درجة مرجحة F1 من 0.93 و 0.75 و 0.49 للغة الإنجليزية ومالايالامية والتاميل على التوالي.احتل محلولنا في المرتبة الأولى باللغة الإنجليزية، الثامن في ملايال و 11 في التاميل.
This paper aims to describe the approach we used to detect hope speech in the HopeEDI dataset. We experimented with two approaches. In the first approach, we used contextual embeddings to train classifiers using logistic regression, random forest, SVM, and LSTM based models. The second approach involved using a majority voting ensemble of 11 models which were obtained by fine-tuning pre-trained transformer models (BERT, ALBERT, RoBERTa, IndicBERT) after adding an output layer. We found that the second approach was superior for English, Tamil and Malayalam. Our solution got a weighted F1 score of 0.93, 0.75 and 0.49 for English, Malayalam and Tamil respectively. Our solution ranked 1st in English, 8th in Malayalam and 11th in Tamil.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نصف نهجنا تجاه استخدام النماذج المدربة مسبقا لمهمة الكشف عن الكلام الأمل.شاركنا في المهمة 2: الكشف عن الكلام للأمل للتساوي والتنوع والإدماج في LT-EDI-2021 @ EACL2021.الهدف من هذه المهمة هو التنبؤ بحضور خطاب الأمل، إلى جانب وجود العينات
التحليل والكشف عن البيانات المختلطة من الكود أمر حتمي في الأوساط الأكاديمية والصناعة، في بلد متعدد اللغات مثل الهند، من أجل حل المشاكل معالجة اللغة الطبيعية في Apropos.تقترح هذه الورقة ذاكرة قصيرة الأجل الطويلة الأجل (Bilstm) مع النهج القائم على الاه
في عالم مع تحديات خطيرة مثل تغير المناخ والصراعات الدينية والسياسية، والأوبئة العالمية والإرهاب، والتمييز العنصري، وهو إنترنت مليء بخطاب الكراهية، والمحتوى المسيء والهجوم هو آخر شيء نرغب فيه.في هذه الورقة، نعمل على تحديد وتعزيز المحتوى الإيجابي والدا
في هذه الورقة نعمل مع كورسيا الكشف عن الكلام تتضمن مجموعات بيانات اللغة الإنجليزية والتاميل والمالياالام.نقدم آلية مرحلتين لاكتشاف خطاب الأمل.في المرحلة الأولى، نبني مصنف لتحديد لغة النص.في المرحلة الثانية، نبني مصنف للكشف عن خطاب الأمل أو الكلام غير
تقدم هذه الورقة بشكل أساسي المحتوى ذي الصلة للكشف عن خطاب الأمل للمهمة للمساواة والتنوع والإدراج في LT-EDI 2021-EACL 2021 ''.تم توفير ما مجموعه ثلاث مجموعات بيانات لغوية، ونختار مجموعة البيانات الإنجليزية لإكمال هذه المهمة.الهدف المهمة المحددة هو تصن