ترغب بنشر مسار تعليمي؟ اضغط هنا

Teamuncc @ LT-EDI-EACL2021: الكشف عن الكلام الأمل باستخدام التعلم نقل مع المحولات

TeamUNCC@LT-EDI-EACL2021: Hope Speech Detection using Transfer Learning with Transformers

331   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نصف نهجنا تجاه استخدام النماذج المدربة مسبقا لمهمة الكشف عن الكلام الأمل.شاركنا في المهمة 2: الكشف عن الكلام للأمل للتساوي والتنوع والإدماج في LT-EDI-2021 @ EACL2021.الهدف من هذه المهمة هو التنبؤ بحضور خطاب الأمل، إلى جانب وجود العينات التي لا تنتمي إلى نفس اللغة في مجموعة البيانات.نحن نصف نهجنا لضبط روبرتا من أجل الكشف عن الكلام على الأمل باللغة الإنجليزية ونهجنا لضبط XLM-Roberta من أجل الكشف عن الكلام في التاميل والمالايالام، وهو لغتين منخفضان من الموارد.نوضح أداء نهجنا على تصنيف النص في الأمل، غير الأمل وغير اللغة.تصنيفنا في المرتبة الأولى في اللغة الإنجليزية (F1 = 0.93)، الأول في التاميل (F1 = 0.61) و 3 في مالايالام (F1 = 0.83).



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تهدف هذه الورقة إلى وصف النهج الذي اعتدنا عليه اكتشاف خطاب الأمل في مجموعة بيانات Hopeiedi.جربنا مع نهجين.في النهج الأول، استخدمنا ادارة سياقية لتدريب المصنفات باستخدام الانحدار اللوجستي، والغابات العشوائية، و SVM، و LSTM.النهج الثاني المعني باستخدام فرقة التصويت للأغلبية من 11 نماذج تم الحصول عليها عن طريق نماذج محولات محول مدربة مسبقا (بيرت، ألبرت، روبرتا، Inderbert) بعد إضافة طبقة إخراج.وجدنا أن النهج الثاني كان متفوقا على اللغة الإنجليزية والتاميل والمالايالامية.حصل حلنا على درجة مرجحة F1 من 0.93 و 0.75 و 0.49 للغة الإنجليزية ومالايالامية والتاميل على التوالي.احتل محلولنا في المرتبة الأولى باللغة الإنجليزية، الثامن في ملايال و 11 في التاميل.
في عالم مع تحديات خطيرة مثل تغير المناخ والصراعات الدينية والسياسية، والأوبئة العالمية والإرهاب، والتمييز العنصري، وهو إنترنت مليء بخطاب الكراهية، والمحتوى المسيء والهجوم هو آخر شيء نرغب فيه.في هذه الورقة، نعمل على تحديد وتعزيز المحتوى الإيجابي والدا عم على هذه المنصات.نحن نعمل مع العديد من النماذج القائمة على المحولات لتصنيف تعليقات وسائل التواصل الاجتماعي ككلام نأمل أو عدم الأمل باللغات باللغة الإنجليزية، مالايالام، وتاميل.تصور هذه الورقة عملنا للمهمة المشتركة على اكتشاف خطاب الأمل للهاتف والتنوع والتنوع والإدماج في LT-EDI 2021- EACL 2021. يمكن عرض رموز أفضل طلباتنا.
الأمل هو جانب أساسي من استقرار الصحة العقلية والانتعاش في كل فرد في هذا العالم سريع المتغير.ستكون أي أدوات وأساليب تم تطويرها للكشف والتحليل وتوليد خطاب الأمل مفيدا.في هذه الورقة، نقترح نموذجا على اكتشاف الأمل في الأمل للكشف تلقائيا عن محتوى الويب ال ذي قد يلعب دورا إيجابيا في نشر العداء على وسائل التواصل الاجتماعي.نحن نقوم بإجراء التجارب من خلال الاستفادة من نماذج معالجة ما قبل المعالجة والنقل.لاحظنا أن نموذج بيرت متعدد اللغات المدرب مسبقا مع الشبكات العصبية للتنزل أعطى أفضل النتائج.تصنيفنا في المرتبة الأولى والثالث والرابع في المرتبة الإنجليزية ومالايالامية والإنجليزية ومجموعات البيانات المختلطة من التاميل والإنجليزية.
التحليل والكشف عن البيانات المختلطة من الكود أمر حتمي في الأوساط الأكاديمية والصناعة، في بلد متعدد اللغات مثل الهند، من أجل حل المشاكل معالجة اللغة الطبيعية في Apropos.تقترح هذه الورقة ذاكرة قصيرة الأجل الطويلة الأجل (Bilstm) مع النهج القائم على الاه تمام، في حل مشكلة الكشف عن الكلام الأمل.باستخدام هذا النهج، تم تحقيق نتيجة F1 من 0.73 (9 أنثو) في مجموعة بيانات ملليالامية - من بين ما مجموعه 31 فريقا شاركت في المسابقة.
التراجع السريع للشبكات الاجتماعية عبر الإنترنت مثل YouTube، Facebook، Twitter يسمح للناس بالتعبير عن آرائهم على نطاق واسع على الإنترنت.ومع ذلك، في الوقت نفسه، يمكن أن يؤدي إلى زيادة في الصراع والكراهية بين المستهلكين في شكل حرية خطاب.لذلك، من الضروري اتخاذ طريقة تقوية إيجابية للبحث عن مشجعة، إيجابية، مساعدة، ومحتوى وسائل الإعلام الاجتماعية الداعمة.في هذه الورقة، نحن تصف نموذج برت محول من أجل الكشف عن الكلام عن الأمل للوصول والتنوع والاندماج، المقدمة لمهمة LT-ADI-2021 2. يحقق نموذجنا مرجحا معدل F1 مرجح من 0.93 على مجموعة الاختبار.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا