ترغب بنشر مسار تعليمي؟ اضغط هنا

الكفاءة غير المرغوب فيها غير مخالفة لغات ذات صلة مع نماذج اللغة عبر اللغات وأهداف الإخلاص

Efficient Unsupervised NMT for Related Languages with Cross-Lingual Language Models and Fidelity Objectives

252   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تستند النجاح الأكثر نجاحا إلى الترجمة الآلية العصبية (NMT) عند توفر بيانات التدريب أحادية غير متوفرة فقط، تسمى الترجمة الآلية غير المدعية، على الترجمة الخلفية حيث يتم إنشاء ترجمات صاخبة لتحويل المهمة إلى واحدة تحت إشراف.ومع ذلك، فإن الترجمة الخلفية هي باهظة الثمن بشكل حسابي وغير فعال.يستكشف هذا العمل نهجا جديدا وفعالا ل NMT غير المدعوم.محول، تهيئته مع أوزان نموذج اللغة عبر اللغات، يتم ضبطه بشكل جيد على بيانات أحادية الأجل من اللغة المستهدفة من خلال التعلم المشترك على إعادة صياغة وإنهاء هدف AutoNCoder.تتم التجارب على مجموعات بيانات WMT للغة الألمانية والفرنسية والإنجليزية والرومانية الإنجليزية.النتائج تنافسية نماذج NMT الأساسية القوية غير الخاضعة للرقابة الوطنية، خاصة لغلا المصادر ذات الصلة عن كثب (الألمانية) مقارنة بأكثر اعتراضا (رومانية، فرنسية)، بينما تتطلب وقتا أقل من حجم التدريب.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذه الورقة مقارنة أداء ثلاث نماذج: SGNS (أخذ العينات السلبية Skip-Gram) والإصدارات المعززة من SVD (تحلل القيمة المفرد) و PPMI (معلومات متبادلة إيجابية) على مهمة تشابه كلمة.نحن نركز بشكل خاص على دور ضبط فرط التشعيم من أجل الهندية القائمة على التوصي ات المقدمة في العمل السابق (على اللغة الإنجليزية).تظهر نتائجنا أن هناك تفضيلات محددة للغة لهذه الفرط.نحن نقدم أفضل إعدادات للهيكلية إلى مجموعة من اللغات ذات العلاقة: البنجابية، الغوجاراتية والمريثي مع نتائج مواتية.نجد أيضا أن نموذج SVD يتم ضبطه بشكل مناسب يتفوق على SGNS لمعظم لغاتنا وهو أيضا أكثر قوة في إعداد الموارد المنخفضة.
استفاد من إعادة صياغة الصياغة على نطاق واسع من التقدم الأخير في تصميم الأهداف التدريبية والبنية النموذجية. ومع ذلك، تركز الاستكشافات السابقة إلى حد كبير على الأساليب الخاضعة للإشراف، والتي تتطلب كمية كبيرة من البيانات المسمى ذات مكلفة لجمعها. لمعالجة هذا العيب، نعتمد نهجا للتعلم ونقله واقتراح خط أنابيب التدريب الذي يتيح نماذج اللغة المدربة مسبقا لتوليد أول اتصالات عالية الجودة في إعداد غير محدد. تتكون وصفة لدينا من تكيف المهام والإشراف الذاتي وخوارزمية فك التشفير الجديدة المسماة حظر ديناميكي (DB). لفرض نموذج سطح متغاضي عن الإدخال، كلما أن نموذج اللغة ينبعث رمز رمزي موجود في تسلسل المصدر، يمنع DB النموذج من إخراج الرمز المميز اللاحق للمصدر خطوة الجيل التالي. نظرا للتقييمات التلقائية والإنسانية أن نهجنا يحقق أداء حديثة من كل من زوج السؤال Quora (QQP) ومجموعات بيانات Paranmt قوية لتحويل المجال بين مجموعة بيانات التوزيعات المميزة. نحن نوضح أيضا تحويلاتنا النموذجية إلى إعادة صياغة لغات أخرى دون أي رسوم إضافية.
أصبح التحويل التعلم بناء على نماذج لغة المحترفين على كمية كبيرة من البيانات الخام نموذجا جديدا للوصول إلى الأداء الحديث في NLP. ومع ذلك، لا يزال من غير الواضح كيف ينبغي تطبيق هذا النهج لغات غير مرئية غير مشمولة بأي نموذج لغوي متعدد اللغات واسعة ناتجا ، والذي يتم توفير كمية صغيرة فقط من البيانات الخام فقط. في هذا العمل، من خلال مقارنة النماذج متعددة اللغات وأنتغوية، نوضح أن هذه النماذج تتصرف بطرق متعددة على اللغات غير المرئية. تستفيد بعض اللغات بشكل كبير من تعلم التعلم والتصرف بالمثل إلى لغات موارد عالية مرتبطة ارتباطا وثيقا في حين أن الآخرين على ما يبدو لا. التركيز على الأخير، نظرا لأن هذا الفشل في النقل يرتبط إلى حد كبير بتأثير البرنامج النصي المستخدم لكتابة هذه اللغات. نظهر أن ترجمة هذه اللغات تعمل بشكل كبير على تحسين إمكانات نماذج اللغة متعددة اللغات على نطاق واسع في مهام المصب. توفر هذه النتيجة اتجاها واعدا نحو جعل هذه النماذج متعددة اللغات بشكل كبير مفيدة لمجموعة جديدة من اللغات غير المرئية.
تعتبر هذه الورقة مشكلة تكيف المجال غير المدعومة من أجل الترجمة الآلية العصبية (NMT)، حيث نفترض الوصول إلى نص أحادي فقط إما في المصدر أو اللغة المستهدفة في المجال الجديد. نقترح طريقة اختيار البيانات عبر اللغات لاستخراج الجمل داخل المجال في جانب اللغة المفقودة من كوربوس أحادية الأجل عام كبيرة. تقوم طريقةنا المقترحة بتدريب طبقة تكيفية على رأس بيرتف متعدد اللغات من خلال التعلم المتعرج عن تعايز التمثيل بين المصدر واللغة المستهدفة. ثم يتيح ذلك تحويل قابلية تحويل المجال بين اللغات بطريقة طلقة صفرية. بمجرد اكتشاف البيانات داخل المجال من قبل المصنف، يتم بعد ذلك تكييف نموذج NMT بالمجال الجديد من خلال مهام الترجمة التعلم المشتركة ومهام التمييز بين المجال. نقيم طريقة اختيار بياناتنا عبر اللغات لدينا على NMT عبر خمسة مجالات متنوعة في ثلاث أزواج لغوية، وكذلك سيناريو في العالم الحقيقي للترجمة Covid-19. تظهر النتائج أن أسلوبنا المقترح تتفوق على خطوط خطوط خطوط اختيار الاختيار الأخرى تصل إلى +1.5 درجة بلو.
تحفز الوجود الواسع للغة الهجومية على وسائل التواصل الاجتماعي تطوير أنظمة قادرة على الاعتراف بهذا المحتوى تلقائيا.بصرف النظر عن بعض الاستثناءات البارزة، فإن معظم الأبحاث حول تحديد اللغة الهجومية التلقائية تعامل مع اللغة الإنجليزية.لمعالجة هذا القصور، نقدم العفن، مجموعة بيانات اللغة المهاراتية الهجومية.القالب هو أول مجموعة بيانات من نوعها مترجمة للأمراثي، مما يفتح مجالا جديدا للبحث في لغات Indo-Arian منخفضة الموارد.نقدم النتائج من العديد من تجارب التعلم الآلي على هذه البيانات، بما في ذلك تجارب التعلم الصفر القصيرة وغيرها من عمليات التعلم على المحولات عبر اللغات الحديثة من البيانات الحالية في البنغالية والإنجليزية والهندية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا