استفاد من إعادة صياغة الصياغة على نطاق واسع من التقدم الأخير في تصميم الأهداف التدريبية والبنية النموذجية. ومع ذلك، تركز الاستكشافات السابقة إلى حد كبير على الأساليب الخاضعة للإشراف، والتي تتطلب كمية كبيرة من البيانات المسمى ذات مكلفة لجمعها. لمعالجة هذا العيب، نعتمد نهجا للتعلم ونقله واقتراح خط أنابيب التدريب الذي يتيح نماذج اللغة المدربة مسبقا لتوليد أول اتصالات عالية الجودة في إعداد غير محدد. تتكون وصفة لدينا من تكيف المهام والإشراف الذاتي وخوارزمية فك التشفير الجديدة المسماة حظر ديناميكي (DB). لفرض نموذج سطح متغاضي عن الإدخال، كلما أن نموذج اللغة ينبعث رمز رمزي موجود في تسلسل المصدر، يمنع DB النموذج من إخراج الرمز المميز اللاحق للمصدر خطوة الجيل التالي. نظرا للتقييمات التلقائية والإنسانية أن نهجنا يحقق أداء حديثة من كل من زوج السؤال Quora (QQP) ومجموعات بيانات Paranmt قوية لتحويل المجال بين مجموعة بيانات التوزيعات المميزة. نحن نوضح أيضا تحويلاتنا النموذجية إلى إعادة صياغة لغات أخرى دون أي رسوم إضافية.
Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled data that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning.
المراجع المستخدمة
https://aclanthology.org/
للحصول على تضمين الجملة ذات الجودة العالية من نماذج اللغة المحددة مسبقا (PLMS)، يجب أن تكون تؤدي إما بزيادة أهداف محالمنة إضافية أو Finetuned على مجموعة كبيرة من أزواج النص المسمى.في حين أن النهج الأخير يتفوق عادة على السابق، إلا أنه يتطلب جهد إنساني
التصنيفات هي تمثيل رمزي للعلاقات الهرمية بين المصطلحات أو الكيانات. في حين أن التصنيفات مفيدة في تطبيقات واسعة، فإن تحديثها أو الحفاظ عليها يدويا كثيفة العمالة وصعبة الحجم في الممارسة العملية. تفشل الأساليب الإشرافية التقليدية لهذه المهمة التخصيب هذه
في هذه الورقة، نقدم نظاما يستغل نماذج اللغة المدربة مسبقا مسبقا لتعيين ملصقات المجال إلى Synpesets Wordnet دون أي نوع من الإشراف.علاوة على ذلك، لا يقتصر النظام استخدام مجموعة معينة من ملصقات المجال.نحن نستنفذ المعرفة المشفرة في مختلف نماذج اللغة المد
تحظى طرازات اللغة واسعة النطاق (LMS) في كورسورا هائلة من النص، مثل GPT-2، هي مولدات نصية مفتوحة قوية. ومع ذلك، نظرا لأن الفحص المنهجي الخاص بنا يكشف، فمن لا يزال يمثل تحديا لهذه النماذج لتوليد ممرات طويلة طويلة متماسكة من النص (على سبيل المثال، 1000
طرق ناجحة للترجمة الآلية العصبية غير المنشأة (UNMT) توظف الاحتجاج عبر اللغات عبر الإشراف الذاتي، في كثير من الأحيان في شكل نمذجة لغة ملمقة أو مهمة توليد التسلسل، والتي تتطلب نموذج محاذاة التمثيلات المعجمية والفوضيةاللغتين.بينما يعمل الاحتجاج عبر اللغ