ترغب بنشر مسار تعليمي؟ اضغط هنا

تكيف المجال غير المقترح للتعميم من الترجمة الآلية العصبية مع اختيار البيانات عبر اللغات

Generalised Unsupervised Domain Adaptation of Neural Machine Translation with Cross-Lingual Data Selection

597   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعتبر هذه الورقة مشكلة تكيف المجال غير المدعومة من أجل الترجمة الآلية العصبية (NMT)، حيث نفترض الوصول إلى نص أحادي فقط إما في المصدر أو اللغة المستهدفة في المجال الجديد. نقترح طريقة اختيار البيانات عبر اللغات لاستخراج الجمل داخل المجال في جانب اللغة المفقودة من كوربوس أحادية الأجل عام كبيرة. تقوم طريقةنا المقترحة بتدريب طبقة تكيفية على رأس بيرتف متعدد اللغات من خلال التعلم المتعرج عن تعايز التمثيل بين المصدر واللغة المستهدفة. ثم يتيح ذلك تحويل قابلية تحويل المجال بين اللغات بطريقة طلقة صفرية. بمجرد اكتشاف البيانات داخل المجال من قبل المصنف، يتم بعد ذلك تكييف نموذج NMT بالمجال الجديد من خلال مهام الترجمة التعلم المشتركة ومهام التمييز بين المجال. نقيم طريقة اختيار بياناتنا عبر اللغات لدينا على NMT عبر خمسة مجالات متنوعة في ثلاث أزواج لغوية، وكذلك سيناريو في العالم الحقيقي للترجمة Covid-19. تظهر النتائج أن أسلوبنا المقترح تتفوق على خطوط خطوط خطوط اختيار الاختيار الأخرى تصل إلى +1.5 درجة بلو.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نحن ندرس مشكلة تكيف المجال في الترجمة الآلية العصبية (NMT) عند مشاركة البيانات الخاصة بالمجال بسبب سرية أو مشكلات حقوق النشر.كخطوة أولى، نقترح بيانات الشظية في أزواج العبارة واستخدام عينة عشوائية لحن نموذج NMT عام بدلا من الجمل الكاملة.على الرغم من ف قدان شرائح طويلة من أجل حماية السرية، نجد أن جودة NMT يمكن أن تستفيد كثيرا من هذا التكيف، وأنه يمكن الحصول على مزيد من المكاسب مع تقنية علامات بسيطة.
يركز العمل السابق بشكل رئيسي على تحسين التحويل عبر اللغات لمهام NLU مع ترميز مسبب متعدد اللغات (MPE)، أو تحسين الأداء على الترجمة الآلية الخاضعة للإشراف مع بيرت. ومع ذلك، فقد تم استكشافه أنه ما إذا كان يمكن أن يساعد MPE في تسهيل عملية النقل عبر اللغا ت لنموذج NMT. في هذه الورقة، نركز على مهمة نقل صفرية عبر اللغات في NMT. في هذه المهمة، يتم تدريب نموذج NMT مع مجموعة بيانات متوازية من زوج لغة واحدة فقط و MPE MPE على الرف، ثم يتم اختباره مباشرة على أزواج لغة الطلقة الصفرية. نقترح Sixt، نموذج بسيط ولكنه فعال لهذه المهمة. يستمتع Sixt بتطوير MPE بجدول تدريبي من مرحلتين ويحصل على مزيد من التحسن في موضع ترميز مفكيك ومكتشف محسن على القدرات. باستخدام هذه الطريقة، يتفوق Sixt بشكل كبير بشكل كبير على MBART، وهو نموذج فك تشفير التركيب متعدد اللغات مسبقا مصممة بشكل صريح ل NMT، مع تحسين متوسط ​​7.1 بلو على مجموعات اختبار صفرية عبر الإنترنت عبر 14 لغة مصدر. علاوة على ذلك، مع وجود بيانات تدريبية وتدريبية أقل بكثير من البيانات، يحقق نموذجنا أداء أفضل في 15 مجموعة اختبار من أي إلى الإنجليزية من Criss و M2M-100، خطين قويين متعدد اللغات NMT.
تعتمد الترجمة الآلية عادة على Corpora الموازي لتوفير إشارات متوازية للتدريب.جلبت ظهور الترجمة الآلية غير المنشورة ترجمة آلة بعيدا عن هذا الاعتماد، على الرغم من أن الأداء لا يزال يتخلف عن الترجمة التقليدية للإشراف الآلية.في الترجمة الآلية غير المنشورة ، يسعى النموذج إلى أوجه تشابه لغة متماثلة كمصدر للإشارة الموازية الضعيفة لتحقيق الترجمة.إن نظرية تشومسكي العالمي النجمية تفترض أن القواعد هي شكل فطري من المعرفة للبشر ويحكمها المبادئ والقيود العالمية.لذلك، في هذه الورقة، نسعى إلى الاستفادة من هذه الأدلة القواعد المشتركة لتوفير إشارات متوازية لغة أكثر صراحة لتعزيز تدريب نماذج الترجمة الآلية غير المنشورة.من خلال تجارب على أزواج لغة متعددة النموذجية، نوضح فعالية مناهجنا المقترحة.
يستخدم تكيف المجال على نطاق واسع في التطبيقات العملية للترجمة الآلية العصبية، والتي تهدف إلى تحقيق أداء جيد على كل من المجال العام والبيانات داخل المجال. ومع ذلك، فإن الأساليب الحالية لتكييف المجال عادة ما تعاني من النسيان الكارثي، والاختلاف المجال ا لكبير، والانفجار النموذجي. لمعالجة هذه المشكلات الثلاثة، نقترح طريقة للتقسيم والتغلب عليها "والتي تعتمد على أهمية الخلايا العصبية أو المعلمات لنموذج الترجمة. في هذه الطريقة، نقوم أولا بإزالة النموذج ويحافظ على الخلايا العصبية أو المعلمات المهمة فقط، مما يجعلها مسؤولة عن كل من المجال العام والترجمة داخل المجال. ثم علينا مزيد من تدريب النموذج المعاني الذي يشرف عليه النموذج الكامل الأصلي مع تقطير المعرفة. أخيرا، نوسع النموذج إلى الحجم الأصلي وضبط المعلمات المضافة للترجمة داخل المجال. أجرينا تجارب على أزواج ومجالات مختلفة للغة والنتائج تظهر أن طريقتنا يمكن أن تحقق تحسينات كبيرة مقارنة بالعديد من خطوط الأساس القوية.
في هذه الورقة، نصف نظام ملكة جمالنا الذي شارك في مهمة ترجمة WMT21 الأخبار. شاركنا بشكل رئيسي في تقييم اتجاهات الترجمة الثلاثة لمهام الترجمة الإنجليزية واليابانية والإنجليزية. في النظم المقدمة، تعتبر في المقام الأول شبكات أوسع، وشبكات أعمق، والترميز ا لموضعي النسبي، والشبكات التنافعية الديناميكية من حيث هيكل النماذج، في حين أننا من حيث التدريب، حققنا في تكييف المجال المعزز للتناقض في التعلم، والتدريب والإشراف على الذات، والتحسين طرق التدريب التبديل الموضوعية. وفقا لنتائج التقييم النهائي، يمكن لشبكة أعمق وأوسع وأقوى تحسين أداء الترجمة بشكل عام، ومع ذلك يمكن أن تحسن طريقة توطين نطاق البيانات لدينا الأداء أكثر. بالإضافة إلى ذلك، وجدنا أن التبديل إلى استخدام هدفنا المقترح خلال المرحلة الفائقة باستخدام البيانات الصغيرة المرتبطة بالنطاق نسبيا يمكن أن يحسن بشكل فعال من استقرار تقارب النموذج وتحقيق الأداء الأمثل بشكل أفضل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا