تعتبر هذه الورقة مشكلة تكيف المجال غير المدعومة من أجل الترجمة الآلية العصبية (NMT)، حيث نفترض الوصول إلى نص أحادي فقط إما في المصدر أو اللغة المستهدفة في المجال الجديد. نقترح طريقة اختيار البيانات عبر اللغات لاستخراج الجمل داخل المجال في جانب اللغة المفقودة من كوربوس أحادية الأجل عام كبيرة. تقوم طريقةنا المقترحة بتدريب طبقة تكيفية على رأس بيرتف متعدد اللغات من خلال التعلم المتعرج عن تعايز التمثيل بين المصدر واللغة المستهدفة. ثم يتيح ذلك تحويل قابلية تحويل المجال بين اللغات بطريقة طلقة صفرية. بمجرد اكتشاف البيانات داخل المجال من قبل المصنف، يتم بعد ذلك تكييف نموذج NMT بالمجال الجديد من خلال مهام الترجمة التعلم المشتركة ومهام التمييز بين المجال. نقيم طريقة اختيار بياناتنا عبر اللغات لدينا على NMT عبر خمسة مجالات متنوعة في ثلاث أزواج لغوية، وكذلك سيناريو في العالم الحقيقي للترجمة Covid-19. تظهر النتائج أن أسلوبنا المقترح تتفوق على خطوط خطوط خطوط اختيار الاختيار الأخرى تصل إلى +1.5 درجة بلو.
This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selection method to extract in-domain sentences in the missing language side from a large generic monolingual corpus. Our proposed method trains an adaptive layer on top of multilingual BERT by contrastive learning to align the representation between the source and target language. This then enables the transferability of the domain classifier between the languages in a zero-shot manner. Once the in-domain data is detected by the classifier, the NMT model is then adapted to the new domain by jointly learning translation and domain discrimination tasks. We evaluate our cross-lingual data selection method on NMT across five diverse domains in three language pairs, as well as a real-world scenario of translation for COVID-19. The results show that our proposed method outperforms other selection baselines up to +1.5 BLEU score.
المراجع المستخدمة
https://aclanthology.org/
نحن ندرس مشكلة تكيف المجال في الترجمة الآلية العصبية (NMT) عند مشاركة البيانات الخاصة بالمجال بسبب سرية أو مشكلات حقوق النشر.كخطوة أولى، نقترح بيانات الشظية في أزواج العبارة واستخدام عينة عشوائية لحن نموذج NMT عام بدلا من الجمل الكاملة.على الرغم من ف
يركز العمل السابق بشكل رئيسي على تحسين التحويل عبر اللغات لمهام NLU مع ترميز مسبب متعدد اللغات (MPE)، أو تحسين الأداء على الترجمة الآلية الخاضعة للإشراف مع بيرت. ومع ذلك، فقد تم استكشافه أنه ما إذا كان يمكن أن يساعد MPE في تسهيل عملية النقل عبر اللغا
تعتمد الترجمة الآلية عادة على Corpora الموازي لتوفير إشارات متوازية للتدريب.جلبت ظهور الترجمة الآلية غير المنشورة ترجمة آلة بعيدا عن هذا الاعتماد، على الرغم من أن الأداء لا يزال يتخلف عن الترجمة التقليدية للإشراف الآلية.في الترجمة الآلية غير المنشورة
يستخدم تكيف المجال على نطاق واسع في التطبيقات العملية للترجمة الآلية العصبية، والتي تهدف إلى تحقيق أداء جيد على كل من المجال العام والبيانات داخل المجال. ومع ذلك، فإن الأساليب الحالية لتكييف المجال عادة ما تعاني من النسيان الكارثي، والاختلاف المجال ا
في هذه الورقة، نصف نظام ملكة جمالنا الذي شارك في مهمة ترجمة WMT21 الأخبار. شاركنا بشكل رئيسي في تقييم اتجاهات الترجمة الثلاثة لمهام الترجمة الإنجليزية واليابانية والإنجليزية. في النظم المقدمة، تعتبر في المقام الأول شبكات أوسع، وشبكات أعمق، والترميز ا