في هذه الورقة مقارنة أداء ثلاث نماذج: SGNS (أخذ العينات السلبية Skip-Gram) والإصدارات المعززة من SVD (تحلل القيمة المفرد) و PPMI (معلومات متبادلة إيجابية) على مهمة تشابه كلمة.نحن نركز بشكل خاص على دور ضبط فرط التشعيم من أجل الهندية القائمة على التوصيات المقدمة في العمل السابق (على اللغة الإنجليزية).تظهر نتائجنا أن هناك تفضيلات محددة للغة لهذه الفرط.نحن نقدم أفضل إعدادات للهيكلية إلى مجموعة من اللغات ذات العلاقة: البنجابية، الغوجاراتية والمريثي مع نتائج مواتية.نجد أيضا أن نموذج SVD يتم ضبطه بشكل مناسب يتفوق على SGNS لمعظم لغاتنا وهو أيضا أكثر قوة في إعداد الموارد المنخفضة.
In this paper we compare the performance of three models: SGNS (skip-gram negative sampling) and augmented versions of SVD (singular value decomposition) and PPMI (Positive Pointwise Mutual Information) on a word similarity task. We particularly focus on the role of hyperparameter tuning for Hindi based on recommendations made in previous work (on English). Our results show that there are language specific preferences for these hyperparameters. We extend the best settings for Hindi to a set of related languages: Punjabi, Gujarati and Marathi with favourable results. We also find that a suitably tuned SVD model outperforms SGNS for most of our languages and is also more robust in a low-resource setting.
المراجع المستخدمة
https://aclanthology.org/
نقدم نسخة ممتدة من الأداة التي وضعت لحساب المسافات اللغوية وغير المتكافئة في التصور السمعي للغات ذات الصلة عن كثب.جنبا إلى جنب مع تقييم المقاييس المتاحة في الإصدار الأولي من الأداة، نقدم Word Adaptation Enterpy كمقيدي إضافي من عدم التماثل اللغوي.يتم
تستند النجاح الأكثر نجاحا إلى الترجمة الآلية العصبية (NMT) عند توفر بيانات التدريب أحادية غير متوفرة فقط، تسمى الترجمة الآلية غير المدعية، على الترجمة الخلفية حيث يتم إنشاء ترجمات صاخبة لتحويل المهمة إلى واحدة تحت إشراف.ومع ذلك، فإن الترجمة الخلفية ه
تهدف أساس التأريض اللغوي (TLG) إلى توطين شريحة فيديو في فيديو غير جذاب بناء على وصف لغة طبيعية. لتخفيف التكلفة الباهظة الثمن التوضيحية للشروح اليدوية لملصقات الحدود الزمنية، نحن مخصصة للإعداد الإشراف ضعيف، حيث يتم توفير أوصاف على مستوى الفيديو فقط لل
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ
تقارير هذه الورقة أنظمة الترجمة الآلية المقدمة من فريق IIITT للغة الإنجليزية → أزواج اللغة المهاراتية والإنجليزية أزواج LORESMT 2021 المشاركة المشتركة.تركز المهمة على الحصول على ترجمات استثنائية لغات منخفضة بالموارد منخفضة إلى حد ما مثل الأيرلندية وا