ترغب بنشر مسار تعليمي؟ اضغط هنا

تهدف اللغة الزمنية الأرضية في مقاطع الفيديو إلى توطين الفترة الزمنية ذات الصلة بالسجن الاستعلام المحدد. الطريقة السابقة تعاملها إما بمهمة الانحدار للحدود أو مهمة استخراج تمتد. ستقوم هذه الورقة بصياغة لغة زمنية تأريض في فهم قراءة الفيديو واقتراح شبكة إعلانات العلاقة (Ranet) لمعالجتها. يهدف هذا الإطار إلى تحديد خيار لحظة فيديو من مجموعة الإجابة المحددة مسبقا بمساعدة Incrse-and-Fine-Query-Query-Quicies Infraction و China- يقترح Interactor Interactor من الاختيار مطابقة المعلومات المرئية والنصية في وقت واحد في مستويات لحظة الجملة ومستويات لحظة الرمز المميز، مما يؤدي إلى تفاعل عبر مشروط خشن وغرامة. علاوة على ذلك، يتم تقديم منشئ علاقة متعددة الخيارات الرواية من خلال الاستفادة من الأزلاء الرسم البياني لالتقاط التبعيات بين خيارات لحظات الفيديو للحصول على أفضل اختيار الخيار. تجارب واسعة النطاق على تصنيف ActivityNet-Campative و Tacos و Charades-Sta تثبت فعالية حلنا. ستكون الرموز متاحة في https://github.com/huntersxsx/ranet.
تهدف أساس التأريض اللغوي (TLG) إلى توطين شريحة فيديو في فيديو غير جذاب بناء على وصف لغة طبيعية. لتخفيف التكلفة الباهظة الثمن التوضيحية للشروح اليدوية لملصقات الحدود الزمنية، نحن مخصصة للإعداد الإشراف ضعيف، حيث يتم توفير أوصاف على مستوى الفيديو فقط لل تدريب. تولد معظم الأساليب الإشرافية الأكثر إشرافا ضعفا مجموعة شريحة مرشحة وتعلم محاذاة متعددة الوسائط من خلال إطار مستمد من MIL. ومع ذلك، يتم فقد الهيكل الزمني للفيديو وكذلك الدلالات المعقدة في الجملة أثناء التعلم. في هذا العمل، نقترح إطار رواية خالية من المرشحين: شبكة محاذاة الدلالات الدلالية الجميلة (FSAN)، ل TLG الإشراف ضعيف. بدلا من عرض الجملة واللحظات المرشحة ككل، يتعلم FSAN محاذاة الدلالات المسلقة عبر الأقراص من قبل وحدة التفاعل عبر مشروط تكرارية، وتولد خريطة محاذاة من الدلالات القابلة للتكنولوجيا الراقية، وتشغيل التأريض مباشرة على أعلى الخريطة. يتم إجراء تجارب واسعة على معايير اثنين واستخدامها على نطاق واسع: تعويضات ActivityNet، و Didemo، حيث تحقق FSAN لدينا أداء حديثة من بين الفن.
تهدف العبارة الأساسية إلى تعيين العبارات النصية إلى مناطق الصور المرتبطة بها، والتي يمكن أن تكون شرطا أساسيا لسبب متعدد الوسائط ويمكن أن تستفيد المهام التي تتطلب تحديد الكائنات القائمة على اللغة. مع تحقيق نماذج للرؤية واللغة المدربة مسبقا أداء مثير ل لإعجاب عبر المهام، لا يزال غير واضح إذا كان بإمكاننا الاستفادة مباشرة من تضمينهم المستفادين لعبارة التأريض دون ضبط جيد. تحقيقا لهذه الغاية، نقترح طريقة لاستخراج أزواج من منطقة العبارات المتطابقة من تضمين الرؤية واللغة المدربة مسبقا واقتراح أربع أهداف صعبة لتحسين عبارة التأريض النموذجية باستخدام بيانات التسمية التوضيحية للصور دون أي إشارات تأريض خاضعة للإشراف. توضح التجارب في مجموعات بيانات تمثيليتين فعالية أهدافنا، مما يتفوق على نماذج أساسية في كل من إعدادات التأريض الإشراف والإشراف عليها. بالإضافة إلى ذلك، نقوم بتقييم embedings المحاذاة على العديد من المهام الأخرى المصب وإظهار أنه يمكننا تحقيق عبارات أفضل دون التضحية بعموة التمثيل.
تم انتقاد التمثيل اللغوي المستمدة من النص وحده بسبب نقص الأساس، أي ربط الكلمات مع معانيها في العالم المادي.عرضت نماذج الرؤية واللغة (VL)، التي تم تدريبها بالاشتراك على نص بيانات النص والصورة أو الفيديو كرددا على مثل هذه الانتقادات.ومع ذلك، في حين أظه رت مؤشر الأفلام VL النجاح على مهام متعددة الوسائط مثل الإجابة على السؤال المرئي، فإنه لم يعرف بعد كيف المقارنة بين التمثيلات اللغوية الداخلية أنفسهم بنظرائهم النصي فقط.تقارن هذه الورقة التمثيلات الدلالية المستفادة عبر VL مقابل النص لا يمكن أن تحذر فقط عن نماذج VL الأخيرة باستخدام مجموعة من التحليلات (التجميع والتحقيق والأداء في مهمة الإجابة على سؤال للبلد) في وضع لغة فقط.نجد أن النماذج متعددة الوسائط تفشل في الظهور بشكل كبير من المتغيرات النصية فقط، مما يشير إلى أن العمل المستقبلي مطلوب إذا تم اتباع الاحتجاج متعدد الوسائط بمثابة متابعته كوسيلة لتحسين NLP بشكل عام.
تلخص هذه الورقة محاولة ارتكبناها لتلبية تحدي مهمة مشتركة بشأن ملخصات التأريض التي تم إنشاؤها بواسطة الجهاز في مباريات NBA (https://github.com/ehudreiter//accuracysharedtsask.git).في النصف الأول، نناقش الأساليب وفي الثانية، نبلغ عن النتائج، جنبا إلى ج نب مع مناقشة حول ميزة ما قد يكون لها تأثير على الأداء.
لتطبيق الروبوتات بفعالية في بيئات العمل ومساعدة البشر، من الضروري تطوير وتقييم كيفية تأثير التأريض البصري (VG) على أداء الجهاز على الكائنات المستحقة. ومع ذلك، فإن أعمال VG الحالية محدودة في بيئات العمل، مثل المكاتب والمستودعات، حيث عادة ما يتم قطع ال كائنات نظرا لقضايا استخدام الفضاء. في عملنا، نقترح مجموعة بيانات رواية OCID-REF التي تتميز بمهمة تجزئة تعبيرية بالإحالة مع تعبيرات إحالة الكائنات المستحقة. يتكون OCID-REF من 305،694 أشير إلى التعبيرات من 2،300 مشاهد مع توفير صورة RGB ومدخلات السحابة نقطة. لحل مشكلات انسداد تحديا، نجمع بأنه من الأهمية بمكان الاستفادة من إشارات 2D و 3D لحل مشكلات انسداد تحديا. توضح نتائجنا التجريبية فعالية الإشارات 2D و 3D تجميع ولكن تشير إلى الكائنات المغطاة لا تزال تحديا لأنظمة التأريض البصرية الحديثة. OCID-REF متوفر علنا ​​في https://github.com/lluma/ocid-ref
أصبحت نماذج لغة ملثم بسرعة قياسي فعلي عند معالجة النص. في الآونة الأخيرة، اقترح العديد من الأساليب زيادة إثراء تمثيلات Word مع مصادر المعرفة الخارجية مثل الرسوم البيانية المعرفة. ومع ذلك، يتم وضع هذه النماذج وتقييمها في إعداد أحادي فقط. في هذا العمل، نقترح مهمة تنبؤات كيان مستقلة في اللغة كإجراء تدريب متوسط ​​لتمثيلات الكلمات البرية على دلالات الكيان وجسم الفجوة عبر لغات مختلفة عن طريق المفردات المشتركة للكيانات. نظهر أن نهجنا يضجع بفعالية إلى معرفة جديدة من المعرفة المعجمية في النماذج العصبية، مما يحسن أدائها في مهام دلالية مختلفة في إعداد Croadlingual Zero-Shot. كميزة إضافية، لا يتطلب التدريب الوسيط لدينا أي مدخلات تكميلية، مما يسمح بتطبيق نماذجنا على مجموعات بيانات جديدة على الفور. في تجاربنا، نستخدم مقالات ويكيبيديا تصل إلى 100 لغة وتراقب بالفعل مكاسب متسقة مقارنة مع خطوط الأساس القوية عند التنبؤ بالكيانات باستخدام فقط Wikipedia الإنجليزية. يؤدي إضافة لغات إضافية أخرى إلى تحسينات في معظم المهام حتى نقطة معينة، ولكن عموما وجدنا أنها غير تافهة على تحسين التحسينات في عملية تحويل النموذج عن طريق التدريب على كميات متزايدة من أي وقت مضى لغات ويكيبيديا.
نحن نحقق في تعلم اللغة الأساسية من خلال بيانات عالمية حقيقية، من خلال نمذجة ديناميات متعلم المعلم من خلال التفاعلات الطبيعية التي تحدث بين المستخدمين ومحركات البحث؛على وجه الخصوص، نستكشف ظهور التعميم الدلالي من تمثيلات كثيفة غير مخالفة خارج البيئات ا لاصطناعية.يتم تعلم مجال التأريض وظيفة دلالة ودالة تكوين من بيانات المستخدم فقط.نظهر كيف تظهر الدلالات الناتجة عن عبارات الاسم خصائصا تتراكم بينما تكون مائيا تماما دون أي وضع علامات واضحة.نحن نقسم لدينا دلالاتنا المتطرفة على التركيبية ومهام الاستدلال صفرية، ونرى أنها توفر نتائج أفضل وتعميمات أفضل من نماذج SOTA غير المدرجة، مثل Word2VEC و BERT.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا