تهدف أساس التأريض اللغوي (TLG) إلى توطين شريحة فيديو في فيديو غير جذاب بناء على وصف لغة طبيعية. لتخفيف التكلفة الباهظة الثمن التوضيحية للشروح اليدوية لملصقات الحدود الزمنية، نحن مخصصة للإعداد الإشراف ضعيف، حيث يتم توفير أوصاف على مستوى الفيديو فقط للتدريب. تولد معظم الأساليب الإشرافية الأكثر إشرافا ضعفا مجموعة شريحة مرشحة وتعلم محاذاة متعددة الوسائط من خلال إطار مستمد من MIL. ومع ذلك، يتم فقد الهيكل الزمني للفيديو وكذلك الدلالات المعقدة في الجملة أثناء التعلم. في هذا العمل، نقترح إطار رواية خالية من المرشحين: شبكة محاذاة الدلالات الدلالية الجميلة (FSAN)، ل TLG الإشراف ضعيف. بدلا من عرض الجملة واللحظات المرشحة ككل، يتعلم FSAN محاذاة الدلالات المسلقة عبر الأقراص من قبل وحدة التفاعل عبر مشروط تكرارية، وتولد خريطة محاذاة من الدلالات القابلة للتكنولوجيا الراقية، وتشغيل التأريض مباشرة على أعلى الخريطة. يتم إجراء تجارب واسعة على معايير اثنين واستخدامها على نطاق واسع: تعويضات ActivityNet، و Didemo، حيث تحقق FSAN لدينا أداء حديثة من بين الفن.
Temporal language grounding (TLG) aims to localize a video segment in an untrimmed video based on a natural language description. To alleviate the expensive cost of manual annotations for temporal boundary labels,we are dedicated to the weakly supervised setting, where only video-level descriptions are provided for training. Most of the existing weakly supervised methods generate a candidate segment set and learn cross-modal alignment through a MIL-based framework. However, the temporal structure of the video as well as the complicated semantics in the sentence are lost during the learning. In this work, we propose a novel candidate-free framework: Fine-grained Semantic Alignment Network (FSAN), for weakly supervised TLG. Instead of view the sentence and candidate moments as a whole, FSAN learns token-by-clip cross-modal semantic alignment by an iterative cross-modal interaction module, generates a fine-grained cross-modal semantic alignment map, and performs grounding directly on top of the map. Extensive experiments are conducted on two widely-used benchmarks: ActivityNet-Captions, and DiDeMo, where our FSAN achieves state-of-the-art performance.
المراجع المستخدمة
https://aclanthology.org/
تهدف اللغة الزمنية الأرضية في مقاطع الفيديو إلى توطين الفترة الزمنية ذات الصلة بالسجن الاستعلام المحدد. الطريقة السابقة تعاملها إما بمهمة الانحدار للحدود أو مهمة استخراج تمتد. ستقوم هذه الورقة بصياغة لغة زمنية تأريض في فهم قراءة الفيديو واقتراح شبكة
تهدف استخراج العلاقات الزمنية الفائقة (FINETEMPRL) إلى الاعتراف بتذكير فترات الزمن والجدول الزمني في النص.جزء مفقود في نماذج التعلم العميقة الحالية ل Finetemprel هو فشلهم في استغلال الهياكل النحوية لجمل المدخلات لإثراء ناقلات التمثيل.في هذا العمل، نق
في هذه الورقة مقارنة أداء ثلاث نماذج: SGNS (أخذ العينات السلبية Skip-Gram) والإصدارات المعززة من SVD (تحلل القيمة المفرد) و PPMI (معلومات متبادلة إيجابية) على مهمة تشابه كلمة.نحن نركز بشكل خاص على دور ضبط فرط التشعيم من أجل الهندية القائمة على التوصي
لا ينبغي أن يؤدي نظام الحوار الذكي في إعداد متعدد المنعطف إلى إنشاء الاستجابات فقط من نوعية جيدة، ولكن يجب أن تولد أيضا الردود التي يمكن أن تؤدي إلى نجاح طويل الأجل للحوار. على الرغم من أن الأساليب الحالية تحسنت جودة الاستجابة، إلا أنها تنظر إلى الإش
تحليل التبعية عبر المجال غير الخاضع للإكمال هو إنجاز تكيف مجال تحليل التبعية دون استخدام البيانات المسمى في المجال المستهدف. غالبا ما تكون الأساليب الحالية من نوع التوضيح الزائفة، والتي تنشئ البيانات من خلال التوضيح الذاتي للنموذج الأساسي وأداء التدر