تهدف اللغة الزمنية الأرضية في مقاطع الفيديو إلى توطين الفترة الزمنية ذات الصلة بالسجن الاستعلام المحدد. الطريقة السابقة تعاملها إما بمهمة الانحدار للحدود أو مهمة استخراج تمتد. ستقوم هذه الورقة بصياغة لغة زمنية تأريض في فهم قراءة الفيديو واقتراح شبكة إعلانات العلاقة (Ranet) لمعالجتها. يهدف هذا الإطار إلى تحديد خيار لحظة فيديو من مجموعة الإجابة المحددة مسبقا بمساعدة Incrse-and-Fine-Query-Query-Quicies Infraction و China- يقترح Interactor Interactor من الاختيار مطابقة المعلومات المرئية والنصية في وقت واحد في مستويات لحظة الجملة ومستويات لحظة الرمز المميز، مما يؤدي إلى تفاعل عبر مشروط خشن وغرامة. علاوة على ذلك، يتم تقديم منشئ علاقة متعددة الخيارات الرواية من خلال الاستفادة من الأزلاء الرسم البياني لالتقاط التبعيات بين خيارات لحظات الفيديو للحصول على أفضل اختيار الخيار. تجارب واسعة النطاق على تصنيف ActivityNet-Campative و Tacos و Charades-Sta تثبت فعالية حلنا. ستكون الرموز متاحة في https://github.com/huntersxsx/ranet.
Temporal language grounding in videos aims to localize the temporal span relevant to the given query sentence. Previous methods treat it either as a boundary regression task or a span extraction task. This paper will formulate temporal language grounding into video reading comprehension and propose a Relation-aware Network (RaNet) to address it. This framework aims to select a video moment choice from the predefined answer set with the aid of coarse-and-fine choice-query interaction and choice-choice relation construction. A choice-query interactor is proposed to match the visual and textual information simultaneously in sentence-moment and token-moment levels, leading to a coarse-and-fine cross-modal interaction. Moreover, a novel multi-choice relation constructor is introduced by leveraging graph convolution to capture the dependencies among video moment choices for the best choice selection. Extensive experiments on ActivityNet-Captions, TACoS, and Charades-STA demonstrate the effectiveness of our solution. Codes will be available at https://github.com/Huntersxsx/RaNet.
المراجع المستخدمة
https://aclanthology.org/
مع الانفراج الأخير لتكنولوجيات التعلم العميق، اجتذبت البحث عن الفهم في قراءة الآلة (MRC) اهتماما كبيرا ووجدت تطبيقاتها متعددة الاستخدامات في العديد من حالات الاستخدام. MRC هي مهمة مهمة لمعالجة اللغة الطبيعية (NLP) تهدف إلى تقييم قدرة الجهاز لفهم تعبي
تهدف أساس التأريض اللغوي (TLG) إلى توطين شريحة فيديو في فيديو غير جذاب بناء على وصف لغة طبيعية. لتخفيف التكلفة الباهظة الثمن التوضيحية للشروح اليدوية لملصقات الحدود الزمنية، نحن مخصصة للإعداد الإشراف ضعيف، حيث يتم توفير أوصاف على مستوى الفيديو فقط لل
آلة قراءة الآلة (MRC)، والتي تتطلب آلة للإجابة على الأسئلة التي تعطى المستندات ذات الصلة، هي طريقة مهمة لاختبار قدرة الآلات على فهم اللغة البشرية.تعد MRC متعددة الخيارات واحدة من أكثر المهام التي تمت دراستها في MRC نظرا لراحة التقييم ومرونة تنسيق الإ
إن الفهم القراءة الآلي (MRC) هو مهمة NLP الصعبة التي يتطلبها التعامل بعناية مع جميع الحبيبات اللغوية من Word، الجملة إلى المرور.بالنسبة إلى MRC الاستخراجية، تم عرض فترة الإجابة في الغالب عن طريق الأدلة الرئيسية الوحدات اللغوية، حيث إنها جملة في معظم
لقد أثبتت تدريب الخصم (AT) كطريقة تنظيمي فعاليتها على المهام المختلفة.على الرغم من وجود تطبيقات ناجحة في بعض مهام NLP، إلا أن الخصائص المميزة لمهام NLP لم يتم استغلالها.في هذه الورقة، نهدف إلى تطبيق مهام فهم القراءة (MRC).علاوة على ذلك، فإننا نتكيف م