تهدف العبارة الأساسية إلى تعيين العبارات النصية إلى مناطق الصور المرتبطة بها، والتي يمكن أن تكون شرطا أساسيا لسبب متعدد الوسائط ويمكن أن تستفيد المهام التي تتطلب تحديد الكائنات القائمة على اللغة. مع تحقيق نماذج للرؤية واللغة المدربة مسبقا أداء مثير للإعجاب عبر المهام، لا يزال غير واضح إذا كان بإمكاننا الاستفادة مباشرة من تضمينهم المستفادين لعبارة التأريض دون ضبط جيد. تحقيقا لهذه الغاية، نقترح طريقة لاستخراج أزواج من منطقة العبارات المتطابقة من تضمين الرؤية واللغة المدربة مسبقا واقتراح أربع أهداف صعبة لتحسين عبارة التأريض النموذجية باستخدام بيانات التسمية التوضيحية للصور دون أي إشارات تأريض خاضعة للإشراف. توضح التجارب في مجموعات بيانات تمثيليتين فعالية أهدافنا، مما يتفوق على نماذج أساسية في كل من إعدادات التأريض الإشراف والإشراف عليها. بالإضافة إلى ذلك، نقوم بتقييم embedings المحاذاة على العديد من المهام الأخرى المصب وإظهار أنه يمكننا تحقيق عبارات أفضل دون التضحية بعموة التمثيل.
Phrase grounding aims to map textual phrases to their associated image regions, which can be a prerequisite for multimodal reasoning and can benefit tasks requiring identifying objects based on language. With pre-trained vision-and-language models achieving impressive performance across tasks, it remains unclear if we can directly utilize their learned embeddings for phrase grounding without fine-tuning. To this end, we propose a method to extract matched phrase-region pairs from pre-trained vision-and-language embeddings and propose four fine-tuning objectives to improve the model phrase grounding ability using image-caption data without any supervised grounding signals. Experiments on two representative datasets demonstrate the effectiveness of our objectives, outperforming baseline models in both weakly-supervised and supervised phrase grounding settings. In addition, we evaluate the aligned embeddings on several other downstream tasks and show that we can achieve better phrase grounding without sacrificing representation generality.
المراجع المستخدمة
https://aclanthology.org/
تم انتقاد التمثيل اللغوي المستمدة من النص وحده بسبب نقص الأساس، أي ربط الكلمات مع معانيها في العالم المادي.عرضت نماذج الرؤية واللغة (VL)، التي تم تدريبها بالاشتراك على نص بيانات النص والصورة أو الفيديو كرددا على مثل هذه الانتقادات.ومع ذلك، في حين أظه
حققت نماذج اللغة المدربة مسبقا نجاحا كبيرا على مجموعة واسعة من مهام NLP. ومع ذلك، فإن التمثيلات السياقية من النماذج المدربة مسبقا تحتوي على معلومات دلالية ومتنامية متشابكة، وبالتالي لا يمكن استخدامها مباشرة لاستخلاص مدينات جملة دلالية مفيدة لبعض المه
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ
هل يمكن لصق Bert مدربة مسبقا بلغة واحدة و GPT لآخر لترجمة النصوص؟يؤدي التدريب للإشراف على الذات باستخدام بيانات أحادية الأونلينغ فقط إلى نجاح نماذج اللغة المدربة مسبقا (ملثمين) في العديد من مهام NLP.ومع ذلك، فإن ربط بيرت مباشرة كتشفير و GPT حيث أن وح
نماذج اللغة المحددة مسبقا (PTLMS) تسفر عن الأداء الحديث في العديد من مهام معالجة اللغة الطبيعية، بما في ذلك بناء الجملة والدلالات والعموم.في هذه الورقة، نركز على التعرف على أي مدى تلتقط PTLMS السمات الدلالية وقيمها، على سبيل المثال، الارتباط بين القي