يركز البحث الحالي على تقدير الجودة لجهاز الترجمة الآلية على جودة الجملة للترجمات.باستخدام أساليب الشرح، يمكننا استخدام تقديرات الجودة هذه لتحديد خطأ مستوى Word على مستوى Word.في هذا العمل، نقارن تقنيات الشرح المختلفة والتحقيق في الأساليب القائمة على
التدرج والقائم على الاضطرابات عن طريق قياس أدائها وجهود حسابية مطلوبة.في جميع تجاربنا، لاحظنا أن استخدام درجات الكلمة المطلقة يعزز أداء المشرفين المستند إلى التدرج بشكل كبير.علاوة على ذلك، نجمع بين طرق الشرح لفرق استغلال نقاط القوة في الأشرار الفردية للحصول على تفسيرات أفضل.نقترح استخدام الأساليب القائمة على التدرج المطلق.هذه العمل بشكل جيد
تمكن الترجمة الآلية العصبية متعددة اللغات (NMT) نموذج واحد لخدمة جميع اتجاهات الترجمة، بما في ذلك تلك التي هي غير مرئية أثناء التدريب، I.E. Zero-Shot الترجمة. على الرغم من أن النماذج الحالية جذابة من الناحية النظرية غالبا ما تنتج ترجمات منخفضة الجودة
- لا تفشل عادة في إنتاج مخرجات باللغة المستهدفة الصحيحة. في هذا العمل، نلاحظ أن الترجمة المستهلكة المستهدفة هي المهيمنة حتى في أنظمة قوية متعددة اللغات، تدربت على كورسا متعددة اللغات الضخمة. لمعالجة هذه المشكلة، نقترح نهج مشترك لتنظيم نماذج NMT على مستوى التمثيل ومستوى التدرج. في مستوى التمثيل، نستفيد مهمة التنبؤ باللغة المستهدفة المساعدة لتنظيم مخرجات فك ترميز الكفر للاحتفاظ بمعلومات حول اللغة المستهدفة. عند مستوى التدرج، نستفيد كمية صغيرة من البيانات المباشرة (بآلاف أزواج الجملة) لتنظيم تدرجات النماذج. توضح نتائجنا أن نهجنا فعال للغاية في حد سواء تقليل حوادث الترجمة المستهدفة وتحسين أداء الترجمة الصفرية بواسطة +5.59 و +10.38 بلو على مجموعات بيانات WMT و OPUS على التوالي. علاوة على ذلك، تظهر التجارب أن طريقتنا تعمل أيضا بشكل جيد عندما لا يتوفر كمية صغيرة من البيانات المباشرة.
اكتسبت أنظمة تلخيص الجماع العصبي تقدما كبيرا في السنوات الأخيرة.ومع ذلك، غالبا ما تنتج تلخيص التلوث في كثير من الأحيان بيانات غير متناسقة أو حقائق كاذبة.كيفية توليد الملخصات التجريدية بشكل كبير تلقائيافي هذه الورقة، اقترحنا نهجا فعالا معزز بيانات تكب
ير البيانات الفعالة لتشكيل مجموعة بيانات الاتساق الواقعية.بناء على مجموعة البيانات الاصطناعية، ندرب نموذجا للتقييم التي لا يمكن أن تجعل تمييز التناسق الواقعي الدقيق والقوي فحسب، بل قادرا أيضا على جعل الأخطاء الواقعية القابلة للتفسير تتبعها توزيع التدرج السابق على توزيع الرمز المميز.توضح إجراء التجارب والتحليل في ملخصات التلخيص المشروح العام ومجموعات بيانات الاتساق واقعية نهجنا فعال ومعقول.
نقترح أول هجوم مقاوم للتدرج على المستوى العام على نماذج المحولات.بدلا من البحث عن مثال خصم واحد، نبحث عن توزيع الأمثلة الخصومة المعلمة بواسطة مصفوفة مستمرة قيمة، وبالتالي تمكين التحسين المستندة إلى التدرج.إننا نوضح تجريبيا أن هجومنا الأبيض الخاص بنا
يصل إلى أداء الهجوم الحديثة في مجموعة متنوعة من المهام اللغوية الطبيعية، مما يتفوق على العمل السابق من حيث معدل النجاح العديي مع مطابقة غير محسنة حسب التقييم الآلي والبشري.علاوة على ذلك، نظير على أن هجوم قوي عبر الصندوق الأسود، تم تمكينه بواسطة أخذ العينات من التوزيع العديزي أو يطابق أو يتجاوز الطرق الحالية، في حين يتطلب فقط مخرجات التسمية الصعبة.
تهدف استخراج العلاقات المنخفضة الموارد (LRE) إلى استخراج حقائق العلاقة من كورسا محدودة المسمى عندما تشريح الإنسان نادرة. تعمل الأعمال الموجودة إما استخدام مخطط التدريب الذاتي لتوليد ملصقات زائفة ستتسبب في مشكلة الانجراف التدريجي، أو نظام التعلم التلو
ي الاستفادي الذي لا يتطلب التغيلات بشكل صريح. لتخفيف التحيز الاختيار بسبب عدم وجود حلقات ردود الفعل في نماذج التعلم الحالية، قمنا بتطوير طريقة تعليمية لتعزيز التعزيز التدرج لتشجيع بيانات الملصقات الزائفة لتقليد اتجاه نزول التدرج على البيانات المسمى و Bootstrap إمكانية التحسين من خلال التجربة والخطأ. نقترح أيضا إطارا يسمى Gradlre، الذي يتعامل مع سيناريوهات رئيسيين في استخراج علاقة الموارد المنخفضة. إلى جانب السيناريو حيث تكون البيانات غير المسبقة كافية، يتعامل Gradlre الموقف حيث لا تتوفر بيانات غير قابلة للتحقيق، من خلال استغلال طريقة تكبير سياقيا لتوليد البيانات. النتائج التجريبية على مجموعات بيانات عامة تثبت فعالية الخريجين في استخراج العلاقات المنخفضة للموارد عند مقارنة مع الأساس.
في هذا العمل، نقترح إطارا جديدا، برت التعلم المتبادل المتماثل التدرج (Gaml-Bert)، لتحسين الخروج المبكر من Bert.مساهمات Gaml-Bert هي طي ثنائي.نقوم بإجراء مجموعة من التجارب الطيارية، والتي توضح أن تقطير المعرفة المتبادلة بين الخروج الضحل والخروج العميق
يؤدي إلى أداء أفضل لكليهما.من هذه الملاحظة، نستخدم التعلم المتبادل لتحسين عروض بيرت المبكرة المبكرة، أي نطلب من كل خروج من بيرت متعددة الخروج لتقطير المعرفة من بعضها البعض.ثانيا، نقترح GA، طريقة تدريب جديدة تقوم بمحاذاة التدرجات من تقطير المعرفة إلى خسائر الانتروبية.يتم إجراء تجارب واسعة النطاق على معيار الغراء، والذي يدل على أن لدينا Gaml-Bert يمكن أن تتفوق بشكل كبير على أحدث الطرق التي تخرج من أحدث الطرق (SOTA) في وقت مبكر.
نحن نقدم متعلما فونوتياكيا بسيطا وعالي للغاية يقوم بتحفيز شركة Automaton المحدودة المحدودة من بيانات نموذج Word.نحن تصف المتعلم وإظهار كيفية قيامه بتحديده للحث على اللغات العادية غير المقيدة، وكذلك كيفية تقييدها إلى بعض الفصول الدراسية غير النظامية م
ثل لغات K-Local K-Local و K- الدقيقة.نقيم المتعلم في قدرته على تعلم القيود الشوئية في أمثلة اللعبة وفي مجموعات بيانات Quechua و Navajo.نجد أن المتعلم غير المقيد هو الأكثر دقة بشكل عام عند النمذجة أشكال تشهد في التدريب؛ومع ذلك، فإن المتعلم الذي يقتصر فقط على فئة اللغة بالعرق الصارم يلتقط بنجاح بعض القيود الفونية غير المخاطية.يخدم المتعلم لدينا كأساس أساليب أكثر تطورا.
في هذه الورقة، نقدم أنظمتنا المقدمة إلى مهمة Semeval-2021 1 بشأن تنبؤ التعقيد المعجمي. وكان الهدف من هذه المهمة المشتركة هو إنشاء أنظمة قادرة على التنبؤ بالتعقيد المعجمي لرموز الرموز Word وبرامج Bigram متعددة الكلمات داخل سياق جملة معطى، أالقيمة المس
تمرة تشير إلى الصعوبة في فهم الكلام المعني.تعتمد نهجنا على مجموعة من مجموعات الانحدار المتدرج المجهزة باستخدام ميزة غير متجانسة تم تعيينها بين الميزات اللغوية، ومظلات الكلمة الثابتة والسياقية، وتعاونية نفسية المعيار، وتردد Wordnet، و Word- وشخصية Bigram وإدراجه وإدراجه في نصوص الكلمات لإنشاء نموذج قادر على تعيين كلمة قادرة على تعيين كلمة قادرة على تعيين كلمة واحدةأو تعبير متعدد الكلمات تعبير تعقيد تعتمد على السياق.يمكننا أن نظهر أنه يمكن أن تساعد تضمين السلسلة السياقية بشكل خاص في التنبؤ بالتعقيد المعجمي.
يتناول البحث نمذجة شبكة عصبونية صنعية متعددة الطبقات ذات تغذية أمامية مدربة باستخدام خوارزمية الانحدار التدريجي للخطأ ذات معامل الزخم و معدل التعلم المتغير، و ذلك لتقدير خرج الشبكة العصبونية الموافق لنسبة التشغيل الأمثل لمبدل رافع الجهد المستمر اعتما
داً على استخدام قياسات تغيرات كل من درجة حرارة الخلية الشمسية و شدة الإشعاع الشمسي، لتتبع نقطة الاستطاعة العظمى MPP لنظم الطاقة الشمسية الكهروضوئية. بالتالي يعتبر المتحكم DMPPT-ANN (Developed MPPT-ANN) المقترح في البحث، مستقل في عمله عن استخدام القياسات الكهربائية لخرج نظام PV لتحديد نسبة التشغيل، و دون الحاجة لاستخدام متحكم تناسبي-تكاملي PI) (Proportional Integral للتحكم في دورة عمل مبدل الجهد، و هذا من شأنه تحسين الأداء الديناميكي للمتحكم المقترح بتحديد نسبة التشغيل بدقة و سرعة فائقة. في هذا السياق، يناقش البحث الاختيار الأمثل لهيكلية الشبكة المقترحة من حيث تحديد العدد الأمثل للطبقات الخفية و العدد الأمثل للعصبونات الموجودة فيها، بتقييم قيم متوسط مربع الخطأ و معامل الارتباط الناتجة بعد كل عملية تدريب للشبكة العصبونية. بعد ذلك يعتمد نموذج الشبكة النهائي الذي يمتلك الهيكلية الأمثل، ليشكل المتحكم المتقرح في البحث DMPPT-ANN لتتبع نقطة MPP لنظام.PV أظهرت نتائج المحاكاة المنجزة في بيئة Matlab/Simulink، الأداء الأفضل للمتحكم DMPPT-ANN المقترح المرتكز على نموذج الشبكة العصبونية MLFFNN، و ذلك بدقة تقدير نسبة التشغيل و بتحسين سرعة استجابة نظام PV في الوصول لنقطة MPP، بالإضافة إلى التخلص بشكل نهائي من التذبذبات الناتجة في الحالة المستقرة في منحني استجابة استطاعة خرج نظام PV مقارنة مع استخدام عدد من المتحكمات المرجعية المستخدمة: متحكم تتبع متقدم MPPT-ANN-PI مرتكز على شبكة عصبونية ANN لتقدير توتر نقطة MPP مع متحكم PI تقليدي، متحكم عائم MPPT-FLC ومتحكم تتبع تقليدي MPPT-INC يستخدم تقنية زيادة الناقلية INC
إن خوارزميات التدرج المترافق هامة لحل مسائل الأمثليات غـير المقيدة، لذلك نقدم في هذا البحث خوارزمية هجينة لتدرج مترافق تعتمد عمى تحسين معامل الترافق الذي يحقق شرط الانحدار الكافي والتقارب الشامل