نحن نصف أنظمة الترجمة الآلية العصبية لدينا المهمة المشتركة 2021 على MT غير الخاضعة للإشراف على الموارد الخلفية والمنخفضة للغاية، والترجمة بين السوربيين العليا والألمانية (الموارد المنخفضة) وبين السوربيان السفلي والألمانية (غير المعدل).أنظمة أدرجت تصف
ية البيانات، والخلفية، والانسقاط BPE، والكثير، ونقل التعلم من لغات عالية (إيه) -ReSource.كما تقاس بواسطة مقاييس أوتوماتيكية، أظهرت أنظمتنا أداءا قويا، ووضعها باستمرار أولا أو مرتبط لأول مرة عبر معظم مؤشرات المقاييس والترجمة.
تصف هذه الورقة أنظمة الترجمة الآلية العصبية Niutrans لمهام الترجمة من الأخبار WMT 2021.لقد جعلنا التقديمات إلى 9 اتجاهات لغة، بما في ذلك محاميات اللغة الإنجليزية، اليابانية والروسية والأيسلندية والأيسلندية والإنجليزية.بنيت أنظمتنا الأساسية على العديد
من المتغيرات الفعالة من المحولات، على سبيل المثال، محول DLCL، ODE-Transformer.نحن نستخدم أيضا الترجمة مرة أخرى، وقطاع المعرفة، وتقنيات ما بعد الفرقة، والتقنيات الدقيقة للتكرار لتعزيز الأداء النموذجي كذلك.
تصف هذه الورقة أنظمة الترجمة الآلية العصبية MiningLamp لمهام الترجمة الأخبار WMT2021.لقد شاركنا في ثمانية اتجاهات مهام ترجمة لنص الأخبار بما في ذلك الصينية من / الإنجليزية، الهوسا من / إلى الإنجليزية، الألمانية من / إلى / اللغة الإنجليزية والفرنسية م
ن / إلى الألمانية.استند نظامنا الأساسي إلى بنية المحولات، مع بناء أوسع أو أصغر لمهام ترجمة أخبار مختلفة.استخدمنا بشكل رئيسي طريقة الترجمة الخلفي، وقراءة المعرفة والضبط بشكل جيد لتعزيز نموذج واحد، في حين تم استخدام الفرقة للجمع بين النماذج الفردية.احتل تقديمنا النهائي الأول لأول مرة في مهمة Hausa.
اكتسبت الترجمة الآلية المتزامنة الجر مؤخرا، بفضل تحسينات الجودة المهمة ومختام تطبيقات البث.تحتاج أنظمة الترجمة المتزامنة إلى إيجاد مفاضلة بين جودة الترجمة ووقت الاستجابة، وبالتالي تم اقتراح تدابير الكمون المتعددة.ومع ذلك، يتم تقدير تقييمات الكمون للت
رجمة الفورية على مستوى الجملة، ولا تأخذ في الاعتبار الطبيعة المتسلسلة لسيناريو البث.في الواقع، هذه تدابير الكمون على مستوى الجملة ليست مناسبة تماما للترجمة المستمرة، مما أدى إلى وجود أرقام غير متماسكة مع سياسة الترجمة المتزامنة للنظام التي يتم تقييمها.يقترح هذا العمل تكيف مستوى دفق من تدابير الكمون الحالية بناء على نهج إعادة تجزئة مطبق على ترجمة الناتج، والتي يتم تقييمها بنجاح على شروط البث لمهمة الإشارة IWSLT.
يصف هذا التقرير أن أنظمة ترجمة آلات Microsoft للمهمة المشتركة WMT21 على الترجمة ذات الجهاز متعدد اللغات على نطاق واسع.شاركنا في مسارات التقييم الثلاثة بما في ذلك المسار الكبير والمسارين الصغيرين حيث لا يتم حدوث المرء السابق وأن الأخيران مقيدان تماما.
تم تهيئة الطلبات النموذجية الخاصة بنا إلى المهمة المشتركة مع Deltalm، وهو نموذج فك ترميز ترميز متعدد اللغز متعدد اللغات مسبقا، ويتم ضبطه بشكل جيد في المقابل مع البيانات الموازية المستديرة ومصادر البيانات المسموح بها وفقا لإعدادات المسار، جنبا إلى جنب مع تطبيق التعلم التدريجي والتكرارمناهج الترجمة الخلفية لمزيد من تحسين الأداء.تم تصنيف التقديمات النهائية لدينا في المرتبة الأولى على ثلاثة مسارات من حيث مقياس التقييم التلقائي.
شاركنا في جميع المسارات لمهمة الترجمة الآلية ل WMT 2021: وحدة المعالجة المركزية ذات CPU أحادية النواة، وحدة المعالجة المركزية متعددة النواة، وأجهزة GPU مع شروط الإنتاجية والكمولية.تجمع تقاريرنا العديد من استراتيجيات الكفاءة: تقطير المعرفة، وحدة فك تر
ميز وحدة بسيطة متكررة بسيطة (SSRU) مع طبقتين أو طبقتين، بقلين من المعجمين، وتنسيقات عدودية أصغر، وتقليم.بالنسبة لمسار وحدة المعالجة المركزية، استخدمنا طرازات 8 بت كمية.بالنسبة لمسار GPU، جربنا أعداد صحيحة FP16 و 8 بت في عشرات الموانئ.بعض عمليات التقديمات لدينا تحسين الحجم عبر سجل سجل 4 بت وحذف قائمة مختصرة معجمية.لقد مددنا تشذيم أكبر أجزاء من الشبكة، مع التركيز على تشذيب المكونات ومستوى الحظر الذي يحسن في الواقع السرعة على عكس تقليم المعامل الحكيم.
تحسنت أداء أنظمة NMT بشكل كبير في السنوات القليلة الماضية ولكن ترجمة الكلمات متعددة الإحساس لا تزال تشكل تحديا. نظرا لأن حواس الكلمات ليست ممثلة بشكل موحد في الشركة الموازية المستخدمة للتدريب، فهناك استخدام مفرط من المعنى الأكثر شيوعا في إخراج MT. في
هذا العمل، نقترح CMBT (الترجمة ذات الاحتياط بالسياقة)، وهو نهج لتحسين ترجمة كلمة متعددة الشعور بالاستفادة من تمثيل الكلمات السياقية المتبادلة المدربة مسبقا (CCWRS). بسبب حساسية السياق الخاصة بهم وبياناتها السابقة للتدريب الكبيرة، يمكن ل CCWRS الوصول بسهولة إلى حواس الكلمات المفقودة أو نادرة جدا في ولاية فورانيا المستخدمة لتدريب MT. على وجه التحديد، تطبق CMBT تحريض معجم ثنائي اللغة على CCWRS الجمل المستهدفة ذات المحور المنطقي من مجموعة بيانات أحادية الأحادية، ثم يترجم هذه الجمل لإنشاء كورب موازية زائفة كبيانات تدريبية إضافية لنظام MT. نحن نختبر جودة الترجمة من الكلمات الغامضة على جناح اختبار المخاط المخاطي، والتي تم بناؤها لاختبار فعالية حذف كلمة معنى الكلمة لأنظمة MT. نظهر أن نظامنا يتحسن على ترجمة حواس كلمة متعددة الترددات الصعبة والثانية.
تصف هذه الورقة التقديم إلى المهمة المشتركة لترجمة الأخبار WMT 2021 بواسطة مجموعة الترجمة الآلية في UPC.الهدف من المهمة هو ترجمة الألمانية إلى الفرنسية (DE-FR) والفرنسية إلى الألمانية (FR-DE).يركز تقديمنا على ضبط نموذج مدرب مسبقا للاستفادة من بيانات أ
حادية الأجل.نحن نغلق mbart50 باستخدام البيانات المصفاة، بالإضافة إلى ذلك، ندرب نموذج محول على نفس البيانات من الصفر.في التجارب، نظهر أن نتائج MBART50 الناشجة في 31.69 بلو ل DE-FR و 23.63 بلو FR-DE، مما يزيد من 2.71 و 1.90 بلو وفقا لذلك، مقارنة بالنموذج الذي نتدرب من الصفر.إن تقديمنا النهائي هو فرقة لهذين النموذجين، مما يزيد من 0.3 بلو ل FR-DE.
تصف هذه الورقة نظام Noahnmt المقدم إلى المهمة المشتركة WMT 2021 الخاصة بترجمة آلية منخفضة للغاية للإشراف على الموارد.النظام هو نموذج محول قياسي مزود بتقنية نقلنا الحديثة.كما توظف التقنيات المستخدمة على نطاق واسع من المعروف أنها مفيدة للترجمة الآلية ا
لعصبية، بما في ذلك الترجمة الترجمة الإلكترونية التكرارية، والصلفة المختارة، والوقت.يقدم التقديم النهائي أعلى بلو لثلاثة اتجاهات ترجمة.
غالبا ما يتم الحصول على بيانات التدريب للترجمة الآلية (MT) من العديد من الشركات الكبيرة التي هي متعددة الأوجه في الطبيعة، على سبيل المثالتحتوي على محتويات من مجالات متعددة أو مستويات مختلفة من الجودة أو التعقيد.بطبيعة الحال، لا تحدث هذه الجوانب بتردد
متساو ولا هي نفسها نفسها بنفس القدر لسيناريو الاختبار في متناول اليد.في هذا العمل، نقترح تحسين هذا التوازن بشكل مشترك مع معلمات نموذج MT لتخفيف مطوري النظام من تصميم الجدول اليدوي.يتم تدريب عصري متعدد المسلح على الاختيار ديناميكيا بين الجوانب بطريقة مفيدة لنظام MT.نقيمها على ثلاثة تطبيقات مختلفة متعددة الأوجه: موازنة البيانات النسبية والبيانات التدريبية الطبيعية، أو البيانات من مجالات متعددة أو أزواج متعددة اللغات.نجد أن تعلم الفرعيد يؤدي إلى أنظمة MT تنافسية عبر المهام، ويقدم تحليلنا رؤى في استراتيجياته المستفادة ومجموعات البيانات الأساسية.