تعاني خدمة الطاقة الكهربائية في الجمهورية العربية السورية من العديد من الصعوبات الناتجة عن نقص الموارد (الفيول) بالإضافة إلى التخريب الذي تعرضت له العديد من مراكز التوليد من قبل المجموعات الإرهابية، ترافق ذلك مع حصار جائر تعرضت له بلدنا أدى إلى تخفيض
كميات وقود التشغيل الذي تزود به محطات التوليد, وقد تسبب كل ماسبق إلى تطبيق برامج التقنين في المحافظات وفقاً لاستهلاك تلك المحافظات ومراكز الإنتاج الموجودة فيها (مصانع، مراكز ضخ، مستشفيات وعدد السكان).
كما يتطلب التنبؤ باستهلاك الطاقة الكهربائية معرفة كميات الاستهلاك اليومية وأوقات الاستهلاك وغيرها من العوامل المؤثرة والتي تشكل كميات كبيرة من البيانات [1]. ولا يزال التنبؤ الدقيق بالحمل الكهربائي يمثل مهمة صعبة بسبب العديد من المشاكل مثل الطابع غير الخطي للسلسلة الزمنية أو الأنماط الموسمية التي يعرضها، والتي تستغرق وقتاً كبيراً كما تؤثر على دقة الأداء في التنبؤ. يمكن تحسين العملية باستخدام شبكاتRNN . [2] بدايةً، تم تحديد الاستهلاك المثالي والمناسب للمنطقة ومقارنته مع الانتاج وإمكانية تمرير الفائض لعمليات احتياطية أخرى أو تزويد مراكز الانتاج بالفائض الذي يمكن الحصول عليه من خلال عملية التنبؤ السابقة.
كما تم استخدام الشبكات العصبية التكرارية RNN (Recurrent Neural Network) وهي عبارة عن سلاسل زمنية تعتمد على تسلسل البيانات وفقاً لدلائل زمنية وقدرتها على التنبؤ بالقيم المستقبلية اعتماداً على البيانات السابقة. ثم تم مقارنة أداء تلك الشبكات مع شبكات DNN (Dense Neural Network) للحصول على تنبؤ مستقبلي أمثل قابل لخدمة وزارة الكهرباء في الجمهورية العربية السورية وحل مشكلة التنبؤ بالحمل الكهربائي بالمقارنة مع الدراسات السابقة.
تم أيضاً اعتماد طريقة التقسيم المتتالي القائم على الوقت، والتي لها القدرة على العمل بصورة أعلى دقة بالنسبة للبيانات ذات العينات العشوائية. وبالنسبة لحالات انخفاض تنظيم البيانات الساعية لاستهلاك القدرة الكهربائية، يمكن لنا أخذ عينات لمجموعة من البيانات بالنسبة للزمن وأخذ 20 بالمئة من البيانات على سبيل المثال كعينات تدريب واختبار.
بناءً على قيم التنبؤ الناتجة عن هذه الدراسة يتم العمل على توزيع الطاقة الكهربائية بالشكل الأنسب وبما يتوافق مع أهمية الاستخدام الأعلى.
تم تلخيص الاستخراج هو الدعامة الرئيسية للتلخيص التلقائي لعدة عقود. على الرغم من كل التقدم المحرز، ما زالت الملخصات الاستخراجية تعاني من أوجه القصور بما في ذلك مشاكل Aquerence الناشئة عن استخراج الجمل بعيدا عن سياقها الأصلي في المستند المصدر. هذا يؤثر
على تماسك وكمية ملخصات الاستخراجية. في هذا العمل، نقترح خطوة خفيفة الوزن لتحرير الوزن للملخصات الاستخراجية التي تقوم بمراكز حول قرار لغز واحد: استئناف عبارات الاسم. نقوم بإجراء دراسات التقييم البشرية التي تظهر أن قضاة الخبراء البشري يفضلون بشكل كبير إنتاج نظامنا المقترح على الملخصات الأصلية. علاوة على ذلك، بناء على دراسة تقييم تلقائي، نقدم دليلا على قدرة نظامنا على توليد القرارات اللغوية التي تؤدي إلى تحسين ملخصات الاستخراجية. نرسم أيضا رؤى حول كيفية استغلال النظام الأوتوماتيكي بعض الإشارات المحلية المتعلقة بأسلوب كتابة نصوص المقال الرئيسية أو النصوص الموجزة لجعل القرارات، بدلا من التفكير حول السياقات بشكل عملي.
في هذه الورقة، نقدم مهمة التنبؤ بشدة من الجوانب التي يقيم بها العمر من محتوى السينما على أساس البرنامج النصي للحوار.إننا نحقق أولا تصنيف شدة الأفلام الترتيبية على 5 جوانب: الجنس والعنف والبهجة واستهلاك المواد المخدرة والمشاهد المخيفة.يتم التعامل مع ا
لمشكلة باستخدام إطار عمل متعدد القائم على شبكة سيامي يعمل بشكل متزامن على تحسين إمكانية تفسير التنبؤات.تظهر النتائج التجريبية أن أسلوبنا تتفوق على نموذج الحالة السابقة للدولة السابقة ويوفر معلومات مفيدة لتفسير تنبؤات النموذج.يتم توفير مجموعة البيانات والمصدر المقترحة للجمهور في مستودع GitHub الخاص بنا.
المحادثات عبر الإنترنت يمكن أن تأخذ في بعض الأحيان دورا للأسوأ، إما بسبب الاختلافات الثقافية المنهجية أو سوء الفهم العرضي أو مجرد خبث.تتوقع الانحراف المتوقع تلقائيا في المحادثات العامة على الإنترنت يوفر فرصة للقيام بالإجراءات المبكرة إلى معتدلة.العمل
السابق في هذا الفضاء محدود، وتمديده بعدة طرق.نحن نطبق تشفير اللغة المحددة مسبقا للمهمة، والتي تتفوقت على النهج السابقة.سنقوم بمزيد من التجربة مع تحويل نموذج التدريب للمهمة من ثابت إلى ديناميكي واحد لزيادة الأفق التوقعات.يظهر هذا النهج نتائج مختلطة: في إعداد بيانات عالي الجودة، يمكن تحقيق أفق متوسط متوسط الأطول بتكلفة انخفاض صغير في F1؛في إعداد بيانات منخفضة الجودة، ومع ذلك، فإن التدريب الديناميكي ينشر الضوضاء وهو أمر ضار للغاية للأداء.
تؤيد الأدلة الحديثة دورا للمعالجة الأساسية في توجيه التوقعات البشرية حول الكلمات القادمة أثناء القراءة، بناء على مخبأ بين أوقات القراءة والكلمة المفاجئة التي يقدرها نموذج المعالجة الدلالي المفيد (Jaffe et al. 2020). الدراسة الحالية تستنسخ وتطويرهافي
هذا النتيجة (1) تمكين المحلل المحلل لمعالجة معلومات الكلمات الفرعية التي قد تقريب من المعرفة المورفولوجية البشرية بشكل أفضل، و (2) تمديد تقييم آثار COMERIAL من القراءة الذاتية لبيانات التصوير بالدماغ البشري.تشير النتائج إلى أن تأثير المعالجة القائم على التوقعات في كور معلومات لا يزال واضحا حتى في وجود خط الأساس النفسي القوي الذي يوفره نموذج الكلمة الفرعية، وأن تأثير comeference لوحظ في كل من بيانات القراءة والنفس ذاتي، وتوفير دليل علىتأثير متواضع.
نحن نحقق في تنبؤات الكراهية المضادة للآسيوية بين مستخدمي Twitter في جميع أنحاء Covid-19.مع ظهور كره الأجانب والاستقطاب الذي رافق استخدام وسائل التواصل الاجتماعي الواسع النطاق في العديد من الدول، أصبحت الكراهية عبر الإنترنت قضية اجتماعية كبرى، وجذب ال
عديد من الباحثين.هنا، نطبق تقنيات معالجة اللغة الطبيعية لتوصيف مستخدمي وسائل التواصل الاجتماعي الذين بدأوا في نشر رسائل الكراهية المضادة للآسيوية خلال CovID-19.قارننا مجموعتين من المستخدمين --- أولئك الذين نشروا من المضادة للآسيا وأولئك الذين لم يفعلوا - فيما يتعلق بمجموعة غنية من الميزات المقاسة بالبيانات قبل CovID-19 وإظهار أنه من الممكن التنبؤ الذي في وقت لاحقنشرت المناهضة للآسيا.يؤكد تحليلنا للميزات التنبؤية على التأثير المحتمل لوسائط الإعلام وإعلام المعلومات التي تبلغ عن الكراهية عبر الإنترنت وتدعو إلى مزيد من التحقيق في دور شبكات الاتصالات الاستقطابية وسائط الإعلام.
في السنوات الأخيرة، الأعمال التجارية العالمية في المناقشات عبر الإنترنت وتقاسم الرأي حول وسائل التواصل الاجتماعي مزدهرة. وبالتالي، يقترح ذلك مهمة التنبؤ بإعادة الدخول لمساعدة الناس على تتبع المناقشات التي يرغبون في الاستمرار فيها. ومع ذلك، فإن الأعما
ل الحالية تركز فقط على استغلال سجلات الدردشة ومعلومات السياق، وتجاهل إشارات التعلم المفيدة المحتملة بيانات المحادثة الأساسية، مثل أنماط موضوع المحادثة والمشاركة المتكررة للمستخدمين المستهدفين، والتي تساعد على فهم سلوك المستخدمين المستهدفين بشكل أفضل في المحادثات. في هذه الورقة، نقترح ثلاثة مهام مساعدة مثيرة للاهتمام وأسس بشكل جيد، وهي نمط انتشار، المستخدم المستهدف المتكرر، وتحويل التأتجل، كإشارات الإشراف ذاتيا لإعادة التنبؤ بالدخول. يتم تدريب هذه المهام الإضافية مع المهمة الرئيسية بطريقة متعددة المهام. تظهر النتائج التجريبية على مجموعة بيانات يتم جمعها حديثا من Twitter و Reddit أن أسلوبنا تتفوق على الحالة السابقة من الفنون السابقة مع عدد أقل من المعلمات والتقارب الأسرع. تظهر تجارب وتحليل مستفيضة فعالية نماذجنا المقترحة وأشير أيضا إلى بعض الأفكار الرئيسية في تصميم المهام ذات الإشراف على الذات.
في التحقق الآلي المطالبة، نسترجع الأدلة من قاعدة المعرفة لتحديد صحة المطالبة.بشكل حدسي، يلعب استرجاع الأدلة الصحيحة دورا حاسما في هذه العملية.في كثير من الأحيان، يتم تناول اختيار الأدلة بمثابة مهمة تصنيف جملة الزوجية، أي نحن ندرب نموذجا للتنبؤ بكل جم
لة على حدة ما إذا كان دليلا على المطالبة.في هذا العمل، نحن نغلق محولات مستوى المستندات لاستخراج جميع الأدلة من وثيقة ويكيبيديا في وقت واحد.نظل أن هذا النهج ينفذ أفضل من الأحكام المصنفة للنموذج القابل للمقارنة بشكل فردي على جميع مقاييس اختيار الأدلة ذات الصلة في الحمى.ينتج بناء خط أنابيبنا الكامل على إجراء اختيار الأدلة هذا نتيجة جديدة للحمى، وهو معيار التحقق من المطالبات الشعبية.
يحتوي الرسم البياني المعرفي المفتوح المجال (KG) على كيانات كعقد، وعلاقات اللغة الطبيعية كحواف، ويتم بناؤها عن طريق الاستخراج (الموضوع، العلاقة، كائن) ثلاث مرات من النص. مهمة التنبؤ ارتباط المجال المفتوح هو أن يستنتج العلاقات المفقودة في كجم. استخدم ا
لعمل السابق التنبؤ بالصلة القياسية للمهمة. نظرا لأن ثلاثة أضعاف استخراج من النص، فيمكننا أن ننظر إليها في السياق النصي الأكبر الذي تم العثور عليه أصلا. ومع ذلك، فإن أساليب التنبؤ بالصلة القياسية تعتمد فقط على هيكل KG وتجاهل السياق النصي الذي تم استخراج كل ثلاث مرات منه. في هذه الورقة، نقدم المهمة الجديدة لتنبؤ ارتباط السياق المفتوح الذي يمكنه الوصول إلى كل من السياق النصي وبنية كجم لإجراء تنبؤ الارتباط. نحن نبني مجموعة بيانات للمهمة واقتراح نموذج لذلك. تظهر تجاربنا أن السياق أمر حاسم في التنبؤ بالعلاقات المفقودة. كما نوضح فائدة التنبؤ بالوصلة السياقية في اكتشاف الاستراتيجية المستقلة للسياق بين العلاقات، في شكل رسوم بيانية استقامة (على سبيل المثال)، والتي تكون فيها العقد العلاقات. تعقد العكس أيضا: المساعدات المستقلة للسياق EGS في التنبؤ بالعلاقات في السياق.
استخراج العلاقات الشخصية تلقائيا من محاور المحادثة يمكن أن تثري قواعد المعرفة الشخصية لتعزيز البحث المخصص والتوتيات واللقات.لاستنتاج علاقات المتحدثين من الحوارات، نقترح فخر، وهو مصنف متعدد الملصقات العصبية، بناء على بيرتف ومحول لإنشاء تمثيل محادثة.يس
تخدم BRIDE هيكل الحوار ويزيده بالمعرفة الخارجية حول ميزات المتحدث ومصمم المحادثة. مثل الأعمال السابقة، نحن نعلم التنبؤ متعدد التسميات لعلاقات الحبيبات الجميلة.نطلق سراح مجموعات بيانات واسعة النطاق، بناء على ScreenPlays من الأفلام والعروض التلفزيونية، مع علاقات موجهة للمشاركين المحادثة.تظهر تجارب واسعة النطاق على كلتا البيانات الأداء فائقة من الفخر مقارنة بناسيات الأحدث.