تكييف ترتيب الكلمات من لغة واحدة إلى أخرى هو مشكلة رئيسية في التنبؤ المنظم عبر اللغات.تشفير الجملة الحالية (على سبيل المثال، RNN، محول مع تضيير الموقف) هي عادة ترتيب الكلمة الحساسة.حتى مع وجود تمثيلات نموذج موحدة (MUSE، MBERT)، قد تؤذي تناقضات ترتيب الكلمات التكيف مع النماذج.في هذه الورقة، نبني نماذج التنبؤ الهيكلية بمدخلات كيس من الكلمات، وإدخال وحدة إعادة ترتيب جديدة لتنظيم الكلمات بعد ترتيب لغة المصدر، والذي يتعلم استراتيجيات إعادة ترتيب محددة المهام من نموذج تنبئ النظام للأغراض العامة.تظهر التجارب على تحليل التبعية المتبادلة الصفرية وعلامات نقاط البيع، والعلامات المورفولوجية أن طرازنا يمكن أن يحسن بشكل كبير من أداء اللغات المستهدفة، وخاصة لغات بعيدة عن اللغة المصدر.
Adapting word order from one language to another is a key problem in cross-lingual structured prediction. Current sentence encoders (e.g., RNN, Transformer with position embeddings) are usually word order sensitive. Even with uniform word form representations (MUSE, mBERT), word order discrepancies may hurt the adaptation of models. In this paper, we build structured prediction models with bag-of-words inputs, and introduce a new reordering module to organizing words following the source language order, which learns task-specific reordering strategies from a general-purpose order predictor model. Experiments on zero-shot cross-lingual dependency parsing, POS tagging, and morphological tagging show that our model can significantly improve target language performances, especially for languages that are distant from the source language.
المراجع المستخدمة
https://aclanthology.org/
إلى جانب توفر مجموعات بيانات واسعة النطاق، مكنت هياكل التعلم العميق التقدم السريع في مهمة الإجابة على السؤال.ومع ذلك، فإن معظم مجموعات البيانات هذه باللغة الإنجليزية، وأدائيات النماذج متعددة اللغات الحديثة أقل بكثير عند تقييمها على البيانات غير الإنج
نقترح طريقة بسيطة لتوليد سؤال متعدد اللغات والإجابة على أزواج على نطاق واسع من خلال استخدام نموذج عام واحد.يمكن استخدام هذه العينات الاصطناعية لتحسين الأداء الصفر لقطة من نماذج QA متعددة اللغات على اللغات المستهدفة.يتطلب تدريبنا المتعدد المهام المقتر
يهدف سؤال متعدد اللغات، الرد على الرسم البياني للمعرفة (KGQA) إلى استخلاص إجابات من الرسم البياني المعرفي (KG) للأسئلة بلغات متعددة. لتكون قابلة للتطبيق على نطاق واسع، نركز على إعداد نقل الطلقة الصفرية. هذا هو، يمكننا فقط الوصول إلى البيانات التدريبي
حققت نماذج متعددة اللغات المدربة مسبقا أداء ملحوظا على تعلم التحويل عبر اللغات.تم تدريب بعض النماذج متعددة اللغات مثل Mbert، مدربة مسبقا على Corpora غير المسبق، وبالتالي لا يمكن تضمين تضمينات لغات مختلفة في النماذج بشكل جيد للغاية.في هذه الورقة، نهدف
حققت نماذج التضمين السياقية المدربة مسبقا متعددة اللغات (Devlin et al.، 2019) أداء مثير للإعجاب على مهام نقل اللغات الصفرية.من خلال إيجاد استراتيجية ضبط الدقيقة الأكثر فعالية لضبط هذه النماذج على لغات الموارد عالية الموارد بحيث تقوم بتحويلاتها جيدا ل