تعاني خدمة الطاقة الكهربائية في الجمهورية العربية السورية من العديد من الصعوبات الناتجة عن نقص الموارد (الفيول) بالإضافة إلى التخريب الذي تعرضت له العديد من مراكز التوليد من قبل المجموعات الإرهابية، ترافق ذلك مع حصار جائر تعرضت له بلدنا أدى إلى تخفيض كميات وقود التشغيل الذي تزود به محطات التوليد, وقد تسبب كل ماسبق إلى تطبيق برامج التقنين في المحافظات وفقاً لاستهلاك تلك المحافظات ومراكز الإنتاج الموجودة فيها (مصانع، مراكز ضخ، مستشفيات وعدد السكان).
كما يتطلب التنبؤ باستهلاك الطاقة الكهربائية معرفة كميات الاستهلاك اليومية وأوقات الاستهلاك وغيرها من العوامل المؤثرة والتي تشكل كميات كبيرة من البيانات [1]. ولا يزال التنبؤ الدقيق بالحمل الكهربائي يمثل مهمة صعبة بسبب العديد من المشاكل مثل الطابع غير الخطي للسلسلة الزمنية أو الأنماط الموسمية التي يعرضها، والتي تستغرق وقتاً كبيراً كما تؤثر على دقة الأداء في التنبؤ. يمكن تحسين العملية باستخدام شبكاتRNN . [2] بدايةً، تم تحديد الاستهلاك المثالي والمناسب للمنطقة ومقارنته مع الانتاج وإمكانية تمرير الفائض لعمليات احتياطية أخرى أو تزويد مراكز الانتاج بالفائض الذي يمكن الحصول عليه من خلال عملية التنبؤ السابقة.
كما تم استخدام الشبكات العصبية التكرارية RNN (Recurrent Neural Network) وهي عبارة عن سلاسل زمنية تعتمد على تسلسل البيانات وفقاً لدلائل زمنية وقدرتها على التنبؤ بالقيم المستقبلية اعتماداً على البيانات السابقة. ثم تم مقارنة أداء تلك الشبكات مع شبكات DNN (Dense Neural Network) للحصول على تنبؤ مستقبلي أمثل قابل لخدمة وزارة الكهرباء في الجمهورية العربية السورية وحل مشكلة التنبؤ بالحمل الكهربائي بالمقارنة مع الدراسات السابقة.
تم أيضاً اعتماد طريقة التقسيم المتتالي القائم على الوقت، والتي لها القدرة على العمل بصورة أعلى دقة بالنسبة للبيانات ذات العينات العشوائية. وبالنسبة لحالات انخفاض تنظيم البيانات الساعية لاستهلاك القدرة الكهربائية، يمكن لنا أخذ عينات لمجموعة من البيانات بالنسبة للزمن وأخذ 20 بالمئة من البيانات على سبيل المثال كعينات تدريب واختبار.
بناءً على قيم التنبؤ الناتجة عن هذه الدراسة يتم العمل على توزيع الطاقة الكهربائية بالشكل الأنسب وبما يتوافق مع أهمية الاستخدام الأعلى.
The electric power service in the Syrian Arab Republic suffers from many difficulties resulting from the lack of resources (fuel), in addition to the sabotage of many generation centers by terrorist groups, which led to the implementation of rationing programs in the governorates according to the consumption of those governorates and the production centers located in them. (factories, pumping centers, hospitals and the population).
Forecasting electric energy consumption also requires knowledge of daily consumption quantities, consumption times and other influencing factors that constitute large amounts of data. Predicting the exact electrical load is still a challenging task due to many problems such as the non-linear nature of the time series or the seasonal patterns it displays, which are very time consuming and affect the accuracy of the prediction performance. The process can be improved by using RNNs.[2]
Initially, the optimal and appropriate consumption for the region was determined, compared with production and the possibility of passing the surplus to other backup operations or providing production centers with the surplus that could be obtained through the previous forecasting process.
Also, Recurrent Neural Networks (RNN) were used, which are time series based on data sequences according to time indices and their ability to predict future values based on past data. Then the performance of those networks was compared with DNN networks (Dense Neural Network) to obtain an optimal future prediction that can be served by the Ministry of Electricity in the Syrian Arab Republic and to solve the problem of predicting the electrical load compared to previous studies.
The time-based successive division method has also been adopted, which has the ability to work more accurately for randomly sampled data. For cases of low regulation of the hourly data for wattage consumption, we can sample a set of data over time and take 20 percent of the data for example as training and test samples.
Based on the prediction values resulting from this study, work is being done to distribute electrical energy in the most appropriate manner and in accordance with the importance of higher usage.
المراجع المستخدمة
S.Canada, “Households and the environment survey: Energy use, 2013,” http://www.statcan.gc.ca/dailyquotidien/160318/dq160318d-eng.htm, Mar 2016.
U. D. of Energy, “Green button,” https://energy.gov/data/green-button.
R. K. Jain, K. M. Smith, P. J. Culligan, and J. E. Taylor, “Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy,” Applied Energy, vol. 123, pp. 168–178, 2014.
Y. Liu, W. Wang, and N. Ghadimi, “Electricity load forecasting by an improved forecast engine for building level consumers,” Energy, vol. 139, pp. 18–30, 2017
.R. E. Edwards, J. New, and L. E. Parker, “Predicting future hourly residential electrical consumption: A machine learning case study,” Energy and Buildings, vol. 49, pp. 591–603, 2012.