ترغب بنشر مسار تعليمي؟ اضغط هنا

نقدم في هذا البحث تطبيق جديد للرسوم البيانية لمعامل الديناميكي( DFGs )، و الذي يختص بنمذجة موضوع، تصنيف النص و استرجاع المعلومات.هذه العوامل الديناميكية مصممة لتشكل متتالية من الوثائق ذات الطابع الزمني. اعتماداً على أساس فن معمارية الترميز التلقائي، يتم تدريب نموذج متعدد الطبقات غير الخطي على مراحل باسلوب حكيم لإنتاج أكثر لتمثيلات مدمجة لحقائب الكلمات عند تسوية وثيقة أو فقرة ، و بهذا يؤدي تحميل دلالي. أنو أيضا ديناميكيات زمنية بسيطة مدمجة على التمثيلات الكامنة ، للإستفادة من البنية الهرمية لسلسلة الوثائق، و يمكن بشكل متزامن إنجاز تصنيفات مراقبة أو الانحدار على عناوين الوثيقة،التي يجعل طريقتنا فريدة من نوعها. تعلم هذا النموذج يتم من خلال تعظيم الإمكانية المشتركة للترميز، فك الترميز،معايير ديناميكية موجهة، و من الممكن استخدام الحد الأعظمي لاستنتاج خلفيي معتمدا على التقريب و الانحدار. يمكننا شرح و تفسير أن تخفيض خسارة الانتروبي الموزونة بين رسومات حوادث الكلمة و اعادة بناءها، يتم بتصغير احتمال نموذج الموضوع، و اظهار أن نموذج موضوعنا يحتوي الاحتمالية الأدنى من توزيعات ديريتشمت الكامنة على أنظمة معالجة المعلومات الطبيعية( Neural Information) ( NIPS Processing Systems ) و حالة مجموعات البيانات المشتركة. لنوضح كيف أن القيود الديناميكية تساعد على التعلم بينما يمكننا و يساعدنا هذا على تصور منحى مسار الموضوع .
إن استخلاص المعلومات هي مهمة العثور على المعلومات المنظمة من نص غير منظم أو نص شبه منظم و هي مهمة هامة في التنقيب بالنصوص و قد تمت دراستها على نطاق واسع في الأوساط البحثية المختلفة بما في ذلك معالجة اللغة الطبيعية، و استرجاع المعلومات و التنقيب عل ى شبكة الإنترنت إضافة إلى مجموعة واسعة من التطبيقات في مجالات التنقيب في الطب الحيوي و الذكاء التجاري. هناك مهمتين أساسيتين لاستخلاص المعلومات و هما التعرف على الكيان و استخلاص العلاقة، المهمة الأولى تشير إلى العثور على الكيانات ذات العلاقة مثل الأشخاص و أسماء الشركات و المواقع ، و المهمة الأخرى تشير إلى العثور على العلاقات الدلالية بين هذه الكيانات.
استخدمت نظم استخلاص العلاقة استخداماً واسعاً للميزات المولدة من وحدات التحليل اللغوي. إذ تؤدي الأخطاء في هذه المميزات إلى أخطاء في كشف العلاقة و تصنيفها. في هذا البحث، نخرج من هذه الطرق التقليدية مع بنية مميز معقدة من خلال تقديم الشبكات العصبونية الالتفافية لاستخلاص العلاقة التي تتعلم تلقائيا ميزات من الجمل و تقلل من الاعتماد على مجموعة الأدوات و المصادر الخارجية. نموذجنا يأخذ مزايا أحجام لنوافذ متعددة للمرشحات و تضمينات الكلمة المدربة سابقا كدخل لبنية غير ثابتة لتحسين الأداء.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا