Do you want to publish a course? Click here

DirectProbe: Studying Representations without Classifiers

DirectProbe: دراسة تمثيلات بدون مصنفات

359   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Understanding how linguistic structure is encoded in contextualized embedding could help explain their impressive performance across NLP. Existing approaches for probing them usually call for training classifiers and use the accuracy, mutual information, or complexity as a proxy for the representation's goodness. In this work, we argue that doing so can be unreliable because different representations may need different classifiers. We develop a heuristic, DirectProbe, that directly studies the geometry of a representation by building upon the notion of a version space for a task. Experiments with several linguistic tasks and contextualized embeddings show that, even without training classifiers, DirectProbe can shine lights on how an embedding space represents labels and also anticipate the classifier performance for the representation.



References used
https://aclanthology.org/
rate research

Read More

This paper aims to calculate regular classical and complementary, so regular total Ignaczak solutions coupled with temperature field ,occupying R3 , and with vanishing stresses and temperature on the boundary.
Machine learning solutions are often criticized for the lack of explanation of their successes and failures. Understanding which instances are misclassified and why is essential to improve the learning process. This work helps to fill this gap by pro posing a methodology to characterize, quantify and measure the impact of hard instances in the task of polarity classification of movie reviews. We characterize such instances into two categories: neutrality, where the text does not convey a clear polarity, and discrepancy, where the polarity of the text is the opposite of its true rating. We quantify the number of hard instances in polarity classification of movie reviews and provide empirical evidence about the need to pay attention to such problematic instances, as they are much harder to classify, for both machine and human classifiers. To the best of our knowledge, this is the first systematic analysis of the impact of hard instances in polarity detection from well-formed textual reviews.
We introduce SelfExplain, a novel self-explaining model that explains a text classifier's predictions using phrase-based concepts. SelfExplain augments existing neural classifiers by adding (1) a globally interpretable layer that identifies the most influential concepts in the training set for a given sample and (2) a locally interpretable layer that quantifies the contribution of each local input concept by computing a relevance score relative to the predicted label. Experiments across five text-classification datasets show that SelfExplain facilitates interpretability without sacrificing performance. Most importantly, explanations from SelfExplain show sufficiency for model predictions and are perceived as adequate, trustworthy and understandable by human judges compared to existing widely-used baselines.
Determining whether two documents were composed by the same author, also known as authorship verification, has traditionally been tackled using statistical methods. Recently, authorship representations learned using neural networks have been found to outperform alternatives, particularly in large-scale settings involving hundreds of thousands of authors. But do such representations learned in a particular domain transfer to other domains? Or are these representations inherently entangled with domain-specific features? To study these questions, we conduct the first large-scale study of cross-domain transfer for authorship verification considering zero-shot transfers involving three disparate domains: Amazon reviews, fanfiction short stories, and Reddit comments. We find that although a surprising degree of transfer is possible between certain domains, it is not so successful between others. We examine properties of these domains that influence generalization and propose simple but effective methods to improve transfer.
In modern natural language processing pipelines, it is common practice to pretrain'' a generative language model on a large corpus of text, and then to finetune'' the created representations by continuing to train them on a discriminative textual inf erence task. However, it is not immediately clear whether the logical meaning necessary to model logical entailment is captured by language models in this paradigm. We examine this pretrain-finetune recipe with language models trained on a synthetic propositional language entailment task, and present results on test sets probing models' knowledge of axioms of first order logic.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا