Study Of The Reaction Kinetics Of The Formation Of Barium Titanate By Heat Treatment

دراسة حركية تفاعل تشكل تيتانات الباريوم بالمعالجة الحرارية

328   0   0   0.0 ( 0 )
 Publication date 2022
  fields Physics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Barium titanate powder was prepared from barium carbonate and titanium dioxide using the solid state reaction method.. In this research, two methods have been demonstarted to determine the fraction reacted temperature of barium titanate components, where the first method depends on the traditional first -and second derivatives, while the second method has been based on modeling the experimental data of reacted fraction with temperature, then a mathematical relationship has been presented using statistic SPSS program. After that, the first -and second derivatives have been taken of this relation with graphs related to it.



References used
No references
rate research

Read More

In this work, the processing of aluminum alloys - copper, which added amounts of copper to aluminum in different parentages (2.5- 4-4.5%) so as not to exceed the limit of saturation Aluminum 6 %( copper).
Aluminum alloys have got extreme industrial importance since 19th century until now. They enter into several light and heavy industries. aluminum is hardened by impurity due to industrial application. In this study, aluminumcupper alloys (with 0.5 % Mg) were prepared, where cupper amount was added to aluminum in different percentages (2.5%,4%,4.5%) ,no overtaking degree of saturation 6% of the weight of cupper. After adding definite percentage of cupper to aluminum, the compounds are fusioned for complete blending, where cupper atoms diffuse into aluminum. Samples are infusioned by definite methods and circumstances. The prepared alloys were thermally treated during 8-30 hours for hardening. In this research we will concentrate on the influence of cupper content on hardening of aluminum and other basic conditions, which are needed to obtain higher hardness for aluminum alloys.
In line quenching and tempering has allowed ASCO (Arabian Steel Company) to have higher ductility bar at higher strength levels compared with classic rebar production with substantial reduction in alloy consumption by using heat treatment (thermex) during production proses on production line. QTB (Quenching Tempering Bars) is an alternate means of strengthening long bars by quenching the bars with water and then allowing the bars to self-tempering and hardened case, the process is performed in line with the rolling process, after the finishingarea. The process is stable and controlled, and it's effective on hardness and strength properties on reinforced steel bars The research has concentrate on Thermex and Thermex elements in finishing area of rolling process.
As a result of the development of the use of reinforced Composites with fibers in practical applications continuously, research aims to study the effect of proportion piroxide additives to unsaturated polyester resin on the tensile properties of th e samples prepared from unsaturated polyester resin reinforced with glass fiber used in wind turbine blades manufacturing, and also studying the effect of for the application of heat treatment operations on the hardening of the unsaturated polyester and tensile properties after heat treatment process the application in order to improve the properties of these blades. Test samples were prepared containing ratios (1% - 1.5% - 2%) of methyl Etel ketone piroxide MEKP and test results showed that the best ratio at 1.5%. While the heat treatment results showed that the best values for tensile strength at break of the samples are treated to a time of / 48 hours /.
A new group of Z n - Al alloys suitable for casting was developed in the late sixties, These alloys are ZA - 8 , ZA - 12 and ZA – 27, where the numbers represent the approximate percentage of aluminum in the alloy. These alloys compete with cast iro n and copper alloys and aluminum alloys. ZA – 27 alloy is characterized by the biggest strength and lowest density alloy from the rest of ZA alloys. It has good physical and mechanical properties (good strength, good cast ability, ease of machining, good wear properties and high corrosion resistance). This research is aimed to study the effect of heat treatment on mechanical properties as well as to improve the wear properties of ZA-27alloy. Heat treatment of type T4 was applied on ZA-27 alloy (This treatment was done by heating the alloy to a temperature equal to 370 oC for a period of 3 or 5 hours and then immersion in water followed by natural aging for 30 days). Wear testing has been made by using dry sliding test of pin samples on the disk - ZA – 27 alloy after casting without any treatment and wear tests were performed on heat treated ZA – 27 alloy samples. The microstructure of the alloy after casting and after heat treatment was examined and the effect of the microstructure on the wear behavior was studied. The hardness and tensile strength of heat treated samples were reduced while elongation was increased compared with alloy after casting. The rate of decrease of hardness was equal to 34.7 %, which is consistent with solutionizing period. On the contrary, the increase in the solutionizing period decreases strength and increases elongation. The study shows also that the heat treated samples have achieved a significant improvement on wear properties compared to the samples after casting without heat treatment

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا