Do you want to publish a course? Click here

Hardening of Aluminum

تقسـية الألمنـيوم

2954   1   44   0 ( 0 )
 Publication date 2006
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Aluminum alloys have got extreme industrial importance since 19th century until now. They enter into several light and heavy industries. aluminum is hardened by impurity due to industrial application. In this study, aluminumcupper alloys (with 0.5% Mg) were prepared, where cupper amount was added to aluminum in different percentages (2.5%,4%,4.5%) ,no overtaking degree of saturation 6% of the weight of cupper. After adding definite percentage of cupper to aluminum, the compounds are fusioned for complete blending, where cupper atoms diffuse into aluminum. Samples are infusioned by definite methods and circumstances. The prepared alloys were thermally treated during 8-30 hours for hardening. In this research we will concentrate on the influence of cupper content on hardening of aluminum and other basic conditions, which are needed to obtain higher hardness for aluminum alloys.

References used
Burg,T., Crosky, A. (2001). School of Material Science and Engineering University of New South Wales
Huang, R. (2003). Web site. Dept of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin Fall
Lecture7-8. (2003). Heat treatable aluminum alloys. Engineering Mechanics The University of Texas at Austin Fall
rate research

Read More

In order to study the effect of prime treatment (salt hardening) on maize seeds (variety Ghouta 82) and type of irrigation water on the plant response to salt stress through the effect on the productivity and the plant tissue contents Cl, Na and K. Maize seeds were soaked in Euphrates fresh water (EC:1.03 dS.m-1), or in agricultural drainage water (EC: 5.89 dS.m-1) for (12) hours, the seeds therefore were dried and planted in plots of (15 m2) for each replicate and then irrigated with four different types of water; (100 % Euphrates water, 50% Euph. water + 50% agri. drain. water, 33 % Euph. water + 67 % agri. drain. water, and 100% agri. drain. water) during the growing season. K, Na, and Cl in plants were determinated, 1000 grains weight, and grain yield production were estimated in kg.h-1 for each replicate and treatment. The results showed that, it is possible to have 3 tons of grain / hectare by irrigation with agricultural drainage water, which is acceptable, under semi-arid conditions. Salt hardening of maize seeds increased seed yield by (32.80%), which is considered satisfactory under the experimental conditions.
The effects of induction hardening on mechanical properties of two kinds of carbon steel (0.59%C , 0.35%C) that are widely used in local industry, were discussed by exposed specimens that were induction hardened with different values of power and i nductor's speed to hardness, tensile, and impact tests. The results of tests showed that the mechanical properties become greater with slight decrease in impact energy of carbon steel when induction hardening is used, and showed the possibility to do control on product's properties by make control on treatment parameters .
In this work, the processing of aluminum alloys - copper, which added amounts of copper to aluminum in different parentages (2.5- 4-4.5%) so as not to exceed the limit of saturation Aluminum 6 %( copper).
The surface hardening by shot peening (S-P) is one of the processes used to increase the hardness of aluminum alloys surface. This step tends to increase of the fatigue strength for this alloy because of the creation of compressive residual surface stress layer, which resists the initiation and propagation of cracks. But in some cases, the opposite of this effect occurs, the fatigue strength decreases because of the initiation of surface micro cracks. The influence of this process on the fatigue strength of two aluminum alloys 1050A and 2219 was investigated. (S- N) curves are determined for two surface conditions produced by shot peening and uppeening. As well as the alloys were studied under loading programme low-high & high-low. This paper deduced that the fatigue life of aluminum alloy 1050A was reduced by a percentage of (23%) because shot peening caused high surface roughness, and consequently high local stress, but the fatigue life of aluminum alloy 2219 was increased by about (38%) because the shot peening caused the creation of compressive residual stresses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا