Do you want to publish a course? Click here

Finding the Necessary Conditions for the Existence of the Dark Soliton Solution to the Vakhnenko-Parkes Equation with Variable Coefficients and with Power Law Nonlinearity

إيجاد الشروط اللازمة لوجود حل ذو موجة منعزلة مظلمة لمعادلة فاخنينكو- باركس ذات الأمثال المتغيرة مع لا خطية قانون الطاقة

682   0   0   0.0 ( 0 )
 Publication date 2020
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research aims to find the necessary conditions for the existence of the dark soliton solution to the Vakhnenko-Parkes equation with time dependent coefficients and with power law nonlinearity by using the solitary wave ansatz method. The value of the power law nonlinearity parameter is determined. The results show that the used method is efficient to obtain this kind of solutions for the nonlinear partial differential equations.


Artificial intelligence review:
Research summary
يهدف هذا البحث إلى إيجاد الشروط اللازمة لوجود حل ذو موجة منعزلة مظلمة لمعادلة فاخنينكو-باركس ذات الأمثال المتغيرة مع لا خطية قانون الطاقة باستخدام طريقة فرضية الحل الموجي. تم تحديد قيمة بارامتر لا خطية قانون الطاقة. أظهرت النتائج أن الطريقة المستخدمة فعالة للحصول على هذا النوع من الحلول للمعادلات التفاضلية الجزئية غير الخطية. تم تقديم الشروط اللازمة لوجود الحل ذو الموجة المنعزلة المظلمة وتحديد الدرجة n التي من أجلها يوجد هذا النوع من الحلول، وكانت n = 1. بينت الدراسة مدى فعالية الطريقة المستخدمة للحصول على حل ذو موجة منعزلة مظلمة. ونأمل أن تشكل الشروط مع الحلول عوناً للباحثين العاملين في مجال الفيزياء الرياضية.
Critical review
دراسة نقدية: يعد البحث المقدم من الدكتور رامز كروم خطوة مهمة في مجال الفيزياء الرياضية، خاصة في دراسة المعادلات التفاضلية الجزئية غير الخطية. ومع ذلك، يمكن تقديم بعض الملاحظات النقدية لتحسين البحث. أولاً، كان من الممكن تقديم المزيد من الأمثلة التطبيقية التي توضح كيفية استخدام الحلول في مجالات مثل ميكانيكا الموائع أو الألياف البصرية. ثانياً، لم يتم التطرق بشكل كافٍ إلى القيود المحتملة للطريقة المستخدمة، مما قد يفتح المجال لمزيد من الدراسات المستقبلية. أخيراً، كان من المفيد تضمين مقارنة بين الطريقة المستخدمة وطرق أخرى لحل المعادلات التفاضلية الجزئية غير الخطية لتوضيح فعالية وكفاءة الطريقة بشكل أكبر.
Questions related to the research
  1. ما الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو إيجاد الشروط اللازمة لوجود حل ذو موجة منعزلة مظلمة لمعادلة فاخنينكو-باركس ذات الأمثال المتغيرة مع لا خطية قانون الطاقة باستخدام طريقة فرضية الحل الموجي.

  2. ما هي الطريقة المستخدمة في البحث للحصول على الحلول؟

    تم استخدام طريقة فرضية الحل الموجي للحصول على الحلول للمعادلات التفاضلية الجزئية غير الخطية.

  3. ما هي الدرجة n التي تم تحديدها لوجود الحل ذو الموجة المنعزلة المظلمة؟

    تم تحديد الدرجة n التي من أجلها يوجد هذا النوع من الحلول وكانت n = 1.

  4. ما هي المجالات التي يمكن أن تستفيد من نتائج هذا البحث؟

    يمكن أن تستفيد مجالات مثل ميكانيكا الموائع، الألياف البصرية، علم الأحياء، وعلم الحركة الكيميائية والكيمياء البيولوجية من نتائج هذا البحث.


References used
VAKHNENKO, V. O. and PARKES,E. J. The calculation of multisoliton solutions of the Vakhnenko equation by the inverse scattering method, Chaos, Solitons & Fractals, vol. 13, no. 9,2002,pp. 1819–1826
KOROGLU, C. andOZIS,T. A novel traveling wave solution for Ostrovsky equation using exp-function method,Computers and Mathematics with Applications, vol. 58, no. 11-12, 2009, pp. 2142–2146.
ABAZARI,R. Application of (G'/G)-expansion method to travelling wave solutions of three nonlinear evolution equation,Computers & Fluids. AnInternational Journal, vol. 39, no. 10,2010,pp. 1957–1963.
BASKONUS,H. M.BULUT,H. andEMIR.D. G.Regarding New Complex Analytical Solutions for the Nonlinear PartialVakhnenko-Parkes Differential Equation via Bernoulli Sub-Equation Function Method.Mathematics Letters.Vol. 1, No. 1, 2015, pp. 1-9
MAJID,F.TRIKI,H.HAYAT,T.ALDOSSARY,OM.BISWAS,A.Solitary wave solutions ofthe Vakhnenko-Parkes equation. Nonlinear Anal 17(1), 2012, pp 60–66
BISWAS A. 1-Soliton solution of the K(m,n) equation with generalized evolution,Phys Lett A (2008);372:4601–2
rate research

Read More

In this work, we have been obtained exact solutions for generalized Fitzhug-Nagumo equation with constant coefficients, by using the first integral method, and we have shown that this method is an efficient method to obtain exact solutions to this kind of nonlinear partial differential equations.
The goal of this work is finding exact solitary wave solutions to generalized Fitzhug-Nagumo equation with constant coefficients, by using the exp-function method, where we have illustrated graphically one of them, the obtained results, with aid of s ymbolic programs as Maple and Mathematica, show that this method is simple, direct and very efficient for solving this kind of nonlinear PDEs, and it requires no advanced mathematical knowledge, so it is convenient to scientists and engineering.
In this work, we have been found explicit exact soliton wave solutions for Zeldovich equation with time-dependent coefficients, by using the tanh function method with nonlinear wave transform, in general case. The results obtained shows that these exact solutions are affected the nonlinear nature of the wave variable, it is also shown that this method is effective and appropriate for solving this kind of nonlinear PDEs, which are models of many applied problems in physics, chemistry and population evolution.
We aim in this research to study the existence and uniqueness of strong solution for initial-boundary values problem for a semi-linear wave equation with the nonlinear boundary dissipation, by transforming it to a Cauchy problem with second order operator differential equations in Hilbert space. Therefore, we transform it, using Green's formula for a triple of Hilbert spaces.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا