يقدم هذا البحث خوارزمية لتصميم نظام يقوم بتصنيف التعبيرات القياسية السبعة لوجه الانسان: الخوف – الاشمئزاز - الحزن - التفاجؤ - الغضب - السعادة - التعبير الطبيعي. حيث يتم تصنيف تعبير الوجه الموجود في الصورة المدخلة للنظام بالاعتماد على استخلاص سمات المظهر من الوجه المعتبر وادخالها إلى شبكة عصبونية لإتمام عملية التصنيف و ذلك باستخدام لغة البرمجة Matlab
This paper presents an algorithm for designing a system that classifies standard human facial expressions which are fear , disgust , sad , surprise , Anger , happiness , natural expression . The facial expression that is presented in the input image of the system can be classified depending on extracting appearance features , then they entered into neural network to complete the classification process using Matlab as a programming language.
Artificial intelligence review:
Research summary
تقدم هذه الرسالة نظامًا لتصنيف تعبيرات الوجه البشرية القياسية (الخوف، الاشمئزاز، الحزن، المفاجأة، الغضب، السعادة، التعبير الطبيعي) باستخدام تقنيات معالجة الصور. يتم تصنيف تعبير الوجه في الصورة المدخلة للنظام بناءً على استخراج سمات المظهر وإدخالها إلى شبكة عصبية (SOM) باستخدام لغة البرمجة Matlab. يتكون العمل من عدة مراحل تشمل تجميع الصور، المعالجة المسبقة، استخراج السمات، تدريب الشبكة العصبية، واختبار النظام. أظهرت النتائج أن النظام حقق أعلى نسبة تصنيف عند تعبير الغضب بنسبة 100%، بينما كانت أدنى نسبة عند تعبير الحزن بنسبة 50%. تعود نسبة الخطأ إلى إمكانية تصنيف الشبكة للشعور الموجود في الصورة إلى شعور آخر قريب منه بسبب المسافة الإقليدية. تم مقارنة النتائج مع دراسة مرجعية وأظهرت تحسنًا في بعض التعبيرات مثل الغضب، بينما كانت أقل دقة في تعبيرات أخرى مثل الحزن.
Critical review
دراسة نقدية: تعتبر هذه الرسالة خطوة مهمة في مجال التعرف على تعبيرات الوجه باستخدام الشبكات العصبية وتقنيات معالجة الصور. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن زيادة حجم قاعدة البيانات المستخدمة في التدريب لتحسين دقة التصنيف. ثانيًا، يمكن تجربة أنواع أخرى من الشبكات العصبية للتحقق من تأثيرها على دقة التصنيف. ثالثًا، يمكن تحسين معالجة الصور المسبقة لتقليل الضجيج بشكل أكثر فعالية. وأخيرًا، يمكن دمج تقنيات أخرى مثل التعلم العميق لتحسين الأداء العام للنظام.
Questions related to the research
-
ما هي التعبيرات الوجهية التي تم تصنيفها في هذه الدراسة؟
التعبيرات الوجهية التي تم تصنيفها هي الخوف، الاشمئزاز، الحزن، المفاجأة، الغضب، السعادة، والتعبير الطبيعي.
-
ما هي أعلى نسبة تصنيف حققها النظام؟
أعلى نسبة تصنيف حققها النظام كانت عند تعبير الغضب بنسبة 100%.
-
ما هي التقنية المستخدمة لاستخراج السمات من الصور؟
التقنية المستخدمة لاستخراج السمات من الصور هي المرشح الغوصي (Gaussian filter).
-
ما هي أسباب نسبة الخطأ في تصنيف التعبيرات؟
تعود نسبة الخطأ إلى إمكانية تصنيف الشبكة للشعور الموجود في الصورة إلى شعور آخر قريب منه بسبب المسافة الإقليدية.
References used
N. Sebe, M. Lew, Y. Sun, I. Cohen, T. Gevers, and T. Huang, \Authentic facial expression analysis," Image and Vision Computing, vol. 25, no. 12, pp. 1856 .3113 ,0362
This paper presents an algorithm for designing a system that classifies standard
human facial expressions which are fear, disgust, sad , surprise, anger, happiness, and the
normal expression . The facial expression that is presented in the input im
With the increase in social networks, people have started to share information via different types of social media. Among themwere sites for exchanging people's opinions and others to exchange stories about real life and stories for children. In this
This Paper offers an effective method to measure the length of the
femur in Fetal Ultrasound Images, it applies a series of steps
starting with the reducing amount of noise in these images, and
then converted them to a binary form and uses morphol
The various types of radial distortions generated by digital cameras are presented in this paper, like Barrel Distortions and Pincushion Distortion.
Image processing techniques are used to correct the barrel distortion generated by wide-angle lenses
This research serves the process of organizing the traffic by reducing traffic congestion,
especially at peak times to a minimum, presenting an effective method is not used locally to
automate traffic lights adoption concepts, image processing, con