Do you want to publish a course? Click here

Automatic Facial Expression Classification Using Image Processing Technique ( Fear – disgust – sadness – Surprise – Anger – Happiness – Natural )

التصنيف الآلي لتعبيرات الوجه باستخدام تقنيات معالجة الصورة - الخوف الاشمئزاز الحزن التفاجؤ الغضب السعادة التعبير الطبيعي

1072   1   13   0.0 ( 0 )
 Publication date 2013
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents an algorithm for designing a system that classifies standard human facial expressions which are fear , disgust , sad , surprise , Anger , happiness , natural expression . The facial expression that is presented in the input image of the system can be classified depending on extracting appearance features , then they entered into neural network to complete the classification process using Matlab as a programming language.


Artificial intelligence review:
Research summary
تقدم هذه الرسالة نظامًا لتصنيف تعبيرات الوجه البشرية القياسية (الخوف، الاشمئزاز، الحزن، المفاجأة، الغضب، السعادة، التعبير الطبيعي) باستخدام تقنيات معالجة الصور. يتم تصنيف تعبير الوجه في الصورة المدخلة للنظام بناءً على استخراج سمات المظهر وإدخالها إلى شبكة عصبية (SOM) باستخدام لغة البرمجة Matlab. يتكون العمل من عدة مراحل تشمل تجميع الصور، المعالجة المسبقة، استخراج السمات، تدريب الشبكة العصبية، واختبار النظام. أظهرت النتائج أن النظام حقق أعلى نسبة تصنيف عند تعبير الغضب بنسبة 100%، بينما كانت أدنى نسبة عند تعبير الحزن بنسبة 50%. تعود نسبة الخطأ إلى إمكانية تصنيف الشبكة للشعور الموجود في الصورة إلى شعور آخر قريب منه بسبب المسافة الإقليدية. تم مقارنة النتائج مع دراسة مرجعية وأظهرت تحسنًا في بعض التعبيرات مثل الغضب، بينما كانت أقل دقة في تعبيرات أخرى مثل الحزن.
Critical review
دراسة نقدية: تعتبر هذه الرسالة خطوة مهمة في مجال التعرف على تعبيرات الوجه باستخدام الشبكات العصبية وتقنيات معالجة الصور. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن زيادة حجم قاعدة البيانات المستخدمة في التدريب لتحسين دقة التصنيف. ثانيًا، يمكن تجربة أنواع أخرى من الشبكات العصبية للتحقق من تأثيرها على دقة التصنيف. ثالثًا، يمكن تحسين معالجة الصور المسبقة لتقليل الضجيج بشكل أكثر فعالية. وأخيرًا، يمكن دمج تقنيات أخرى مثل التعلم العميق لتحسين الأداء العام للنظام.
Questions related to the research
  1. ما هي التعبيرات الوجهية التي تم تصنيفها في هذه الدراسة؟

    التعبيرات الوجهية التي تم تصنيفها هي الخوف، الاشمئزاز، الحزن، المفاجأة، الغضب، السعادة، والتعبير الطبيعي.

  2. ما هي أعلى نسبة تصنيف حققها النظام؟

    أعلى نسبة تصنيف حققها النظام كانت عند تعبير الغضب بنسبة 100%.

  3. ما هي التقنية المستخدمة لاستخراج السمات من الصور؟

    التقنية المستخدمة لاستخراج السمات من الصور هي المرشح الغوصي (Gaussian filter).

  4. ما هي أسباب نسبة الخطأ في تصنيف التعبيرات؟

    تعود نسبة الخطأ إلى إمكانية تصنيف الشبكة للشعور الموجود في الصورة إلى شعور آخر قريب منه بسبب المسافة الإقليدية.


References used
N. Sebe, M. Lew, Y. Sun, I. Cohen, T. Gevers, and T. Huang, \Authentic facial expression analysis," Image and Vision Computing, vol. 25, no. 12, pp. 1856 .3113 ,0362
rate research

Read More

This paper presents an algorithm for designing a system that classifies standard human facial expressions which are fear, disgust, sad , surprise, anger, happiness, and the normal expression . The facial expression that is presented in the input im age of the system can be classified depending on extracting appearance features then, it is entered into neural network to complete the classification process using Matlab as a programming language. Multiple stages completed the work, which are, (collection images, pre-processing of the images, feature extraction, training neural network, classification and testing). Our system has been able to achieve the highest rating when the expression of anger reached 100 %, while the lowest rating was at the expression of sad by 30%.
With the increase in social networks, people have started to share information via different types of social media. Among themwere sites for exchanging people's opinions and others to exchange stories about real life and stories for children. In this work we made use of children's stories and employed them to teach children with Down syndrome the correct feelings by reading a story for them, converting it into text, processing the text using natural languages and extracting feelings automatically from This story, and to achieve this, we used several techniques, combined them, and compared their results on a number of short stories dedicated to children, where each of the different techniques that were unsupervised, such as Dictionary Based or supervised, such as data-dependent neural networks, were used to analyze feelings, where we used multiple classifiers. They are Support Vector Machine, Stochastic Gradient Descent, Decision Tree, Random Forest, Naïve Bayes, K-Nearest Neighbor, and Nearest Centroid We also used deep neural networks as the example of RNN. Finally, the correct sentiment for the story was reached through Dictionary Based which gave the best accuracy and then showed a photo that shows the child the expression they want to start with The events of this story to interact with him and learn the correct expression
This Paper offers an effective method to measure the length of the femur in Fetal Ultrasound Images, it applies a series of steps starting with the reducing amount of noise in these images, and then converted them to a binary form and uses morphol ogical operations to segment the femur and isolate it from the rest of the image objects, then it applies an Edge Detector in order to find the edges of the bone, then uses the Hough Transform to detect straight lines in the image. we apply overlapping for resulted lines on the original image, finally we choose the most significant and longest straight line which is corresponding to the length of the femur. The proposed method facilitates the measurement of the femur without the help of a physician through a series of steps.
The various types of radial distortions generated by digital cameras are presented in this paper, like Barrel Distortions and Pincushion Distortion. Image processing techniques are used to correct the barrel distortion generated by wide-angle lenses of digital cameras. A model for barrel distortions is founded. Moreover, an algorithm for correcting this distortion is developed. This algorithm depends on finding the right parameters of the model. The grid pattern is used to detect pixels that caused the distortion and reallocate these pixels back into their original locations, making the corrected photo as close as possible to the original.
This research serves the process of organizing the traffic by reducing traffic congestion, especially at peak times to a minimum, presenting an effective method is not used locally to automate traffic lights adoption concepts, image processing, con trollers, communication. It is organizing image capture processes on a regular basis in all the streets leading to the traffic node, and then this image was taken to the central computer, which is processes each image by comparing them with all the pictures taken at a certain moment and based on the comparison, the Central Computer conclusion of the new chronological order to change traffic lights in all the streets then sends the new update to the controllers in each signal light which leads to re- Automatics these signals,by reducing bottlenecks to the minimum level and repeat imaging processes and modernization of signals throughout the day we can have access to a system to automate the traffic contract is close to the ideal note that by connecting traffic contract with each other and with the main central computer we can solve other problems like emergency and firefighting. Key words: a traffic node, signal processing, camera, network, processor, microcontroller.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا