يقدم هذا البحث خوارزمية لتصميم نظام يقوم بتصنيف التعابير القياسية السبعة لوجه الإنسان (الخوف – الاشمئزاز – الحزن – التفاجؤ – الغضب – السعادة – التعبير الطبيعي) باستخدام بعض تقنيات معالجة الصورة، حيث يتم تصنيف تعبير الوجه الموجود في الصورة المدخلة للنظام بالاعتماد على استخلاص سمات المظهر من الوجه المعتبر و إدخالها إلى شبكة عصبونية لإتمام عملية التصنيف و ذلك باستخدام لغة البرمجة Matlab.
تم إنجاز العمل على مراحل متعددة و هي: (مرحلة تجميع الصور، مرحلة المعالجة المسبقة للصورة، مرحلة استخلاص السمات، مرحلة تدريب الشبكة العصبونية، مرحلة التصنيف و الاختبار). و قد تمكن نظامنا المعتبر من تحقيق أعلى نسبة تصنيف عند تعبير الغضب حيث وصلت 100% , بينما أدنى نسبة تصنيف كانت عند تعبير الحزن و هي 50%.
This paper presents an algorithm for designing a system that classifies standard
human facial expressions which are fear, disgust, sad , surprise, anger, happiness, and the
normal expression . The facial expression that is presented in the input image of the system
can be classified depending on extracting appearance features then, it is entered into
neural network to complete the classification process using Matlab as a programming
language.
Multiple stages completed the work, which are, (collection images, pre-processing of
the images, feature extraction, training neural network, classification and testing). Our
system has been able to achieve the highest rating when the expression of anger reached
100 %, while the lowest rating was at the expression of sad by 30%.
Artificial intelligence review:
Research summary
يقدم هذا البحث خوارزمية لتصميم نظام يقوم بتصنيف التعابير القياسية السبعة لوجه الإنسان (الخوف – الاشمئزاز - الحزن - التقاجؤ - الغضب - السعادة - التعبير الطبيعي) باستخدام بعض تقنيات معالجة الصورة. يتم تصنيف تعبير الوجه الموجود في الصورة المدخلة للنظام بالاعتماد على استخلاص سمات المظهر من الوجه وادخالها إلى شبكة عصبونية لإتمام عملية التصنيف باستخدام لغة البرمجة Matlab. يتكون النظام من عدة مراحل: تجميع الصور، المعالجة المسبقة للصورة، استخلاص السمات، تدريب الشبكة العصبونية، التصنيف والاختبار. حقق النظام أعلى نسبة تصنيف عند تعبير الغضب بنسبة 100%، بينما كانت أقل نسبة عند تعبير الحزن بنسبة 30%. تم استخدام قاعدة بيانات مكونة من صور تعابير الوجه القياسية لعشرة أشخاص، حيث تم تصنيف الصور باستخدام المرشح الغوصي وشبكة SOM. تم مقارنة نتائج النظام مع دراسة مرجعية، حيث أظهرت النتائج أن النظام المقترح حقق أداءً أفضل في بعض التعابير وأداءً أقل في تعابير أخرى. تم تقديم توصيات لتحسين النظام بزيادة عدد صور التعابير واستخدام نوع آخر من الشبكات العصبونية.
Critical review
دراسة نقدية: يعتبر هذا البحث خطوة مهمة نحو تطوير نظم التعرف على تعابير الوجه باستخدام تقنيات معالجة الصورة والشبكات العصبونية. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، قاعدة البيانات المستخدمة صغيرة نسبياً، مما قد يؤثر على دقة النتائج. يفضل زيادة عدد الصور والأشخاص في قاعدة البيانات للحصول على نتائج أكثر دقة. ثانياً، النظام يعتمد بشكل كبير على المرشح الغوصي وشبكة SOM، يمكن تجربة أنواع أخرى من الشبكات العصبونية وتقنيات معالجة الصورة لتحسين الأداء. ثالثاً، لم يتم تناول تأثير العوامل الخارجية مثل الإضاءة وزوايا التصوير على دقة التصنيف، وهو ما يمكن أن يكون له تأثير كبير في التطبيقات العملية. وأخيراً، يمكن تحسين النظام بإضافة ميزات أخرى من صورة التعبير ودراسة أثرها على دقة النتائج.
Questions related to the research
-
ما هي التعابير القياسية السبعة التي تم تصنيفها في هذا البحث؟
التعابير القياسية السبعة هي: الخوف، الاشمئزاز، الحزن، التقاجؤ، الغضب، السعادة، والتعبير الطبيعي.
-
ما هي أعلى نسبة تصنيف حققها النظام ولأي تعبير؟
أعلى نسبة تصنيف حققها النظام كانت 100% لتعبير الغضب.
-
ما هي أقل نسبة تصنيف حققها النظام ولأي تعبير؟
أقل نسبة تصنيف حققها النظام كانت 30% لتعبير الحزن.
-
ما هي التوصيات التي قدمها الباحثون لتحسين النظام؟
التوصيات تشمل: استخلاص عناصر وميزات أخرى من صورة التعبير، زيادة عدد صور التعابير في قاعدة البيانات، واستخدام نوع آخر من الشبكات العصبونية للتحقق من صور التعابير وتصنيفها.
References used
C. C. Chibelushi , F. Bourel , Facial Expression Recognition: A Brief Tutorial Overview, School of Computing, University, 2002
S. Moore, R. Bowden , Local binary patterns for multi-view facial expression recognition , / Computer Vision and Image Understanding 115 (2011) 541–558,2011
K. Mehotra, , C. K. Mohan and S. Ranka, , Self-Organizing Maps (SOMs) , Prentice Hall. pp. 169-187
This paper presents an algorithm for designing a system that classifies standard human facial expressions which are fear , disgust , sad , surprise , Anger , happiness , natural expression . The facial expression that is presented in the input image
With the increase in social networks, people have started to share information via different types of social media. Among themwere sites for exchanging people's opinions and others to exchange stories about real life and stories for children. In this
This Paper offers an effective method to measure the length of the
femur in Fetal Ultrasound Images, it applies a series of steps
starting with the reducing amount of noise in these images, and
then converted them to a binary form and uses morphol
The various types of radial distortions generated by digital cameras are presented in this paper, like Barrel Distortions and Pincushion Distortion.
Image processing techniques are used to correct the barrel distortion generated by wide-angle lenses
This research serves the process of organizing the traffic by reducing traffic congestion,
especially at peak times to a minimum, presenting an effective method is not used locally to
automate traffic lights adoption concepts, image processing, con