Do you want to publish a course? Click here

Three Point Spline Collocation Method for Solving General Linear and Nonlinear Eighth-Order Boundary-Value Problems

طريقة تجميع شرائحية بثلاث نقاط لحل مسائل القيم الحدية الخطية وغير الخطية المعممة من المرتبة الثامنة

1933   0   113   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, a spline collocation method is developed for finding numerical solutions of general linear eighth-order boundary-value problems (BVPs) and nonlinear eighth-order initial value problems (IVPs). The presented collocation method affords the spline solution by the polynomial of degree eleventh which satisfies the BVPs and IVPs at three collocation points. The study shows that the spline collocation method when is applied such this problems is existent and unique. Moreover, the purposed method if applied to these systems will be consistent and the global truncation error equal eleventh. Numerical results are given for four examples to illustrate the implementation and efficiency of the method. Comparisons of the results obtained by the present method with results obtained by the other methods reveal that the present method is very effective and convenient.


Artificial intelligence review:
Research summary
في هذا البحث، تم تطوير طريقة تجميع شرائحية لحل مسائل القيم الحدية الخطية وغير الخطية من المرتبة الثامنة. تعتمد الطريقة المقترحة على استخدام كثيرات حدود من الدرجة الحادية عشرة التي تحقق المسائل عند ثلاث نقاط تجميع. تُظهر الدراسة أن الطريقة المقترحة موجودة ومعرفة بشكل وحيد، وأنها متجانسة ومنقارية مع خطأ مقتطع شامل من الرتبة الحادية عشرة. تم اختبار الطريقة على أربع مسائل مختلفة، وأظهرت النتائج أن الطريقة المقترحة تتفوق من حيث الدقة والفعالية مقارنة بالطرق الأخرى المستخدمة في هذا المجال.
Questions related to the research
  1. ما هي الطريقة المقترحة في هذا البحث لحل مسائل القيم الحدية من المرتبة الثامنة؟

    الطريقة المقترحة هي طريقة تجميع شرائحية بثلاث نقاط تجميع تعتمد على كثيرات حدود من الدرجة الحادية عشرة.

  2. ما هي الخصائص التي تميز الطريقة المقترحة في هذا البحث؟

    الطريقة المقترحة موجودة ومعرفة بشكل وحيد، متجانسة ومنقارية، مع خطأ مقتطع شامل من الرتبة الحادية عشرة.

  3. كم عدد المسائل التي تم اختبار الطريقة المقترحة عليها؟

    تم اختبار الطريقة المقترحة على أربع مسائل مختلفة.

  4. ما هي المجالات التي يمكن أن تستفيد من هذه الطريقة المقترحة؟

    يمكن أن تستفيد مجالات مثل الفيزياء الفلكية، استقرار الهيدروديناميكا والهيدرومغناطيسية، ديناميكا السوائل، علم الفلك، والهندسة والفيزياء التطبيقية من هذه الطريقة.


References used
JALEB H., K. FARAJEYAN, Solution of eighth-order boundary-value problems using nonpolynomial spline, Mathematical Sciences, Vol. 2, No. 1 (2008) 33-45
RASHIDINIA J., R. JALILIAN; K. FARAJEYAN, Spline approximate solution of eighth-order boundary-value problems, International Journal of Computer Mathematics. Vol. 86, No. 8, (2009), 1319–1333
LAMNII A. and H. MRAOUI, Spline collocation method for solving boundary value problems, International Journal of Mathematical Modelling & Computations Vol. 03, No. 01, (2013), 11- 23
(KASI VISWANADHAM K.N.S. and Y. SHOWRI RAJU, Quintic B-spline Collocation Method for Eighth Order Boundary Value Problems, Advances in Computational Mathematics and its Applications, Vol. 1, No. 1, (2012
NOOR M. A. and S.T. MOHYUD-Din, Variational iteration decomposition method for solving eighth-order boundary value problems, Differential Equations and Nonlinear Mechanics, Vol. (2007), pp. 1-16
rate research

Read More

In this paper, spline collocation method is considered for solving two forms of problems. The first form is general linear sixth-order boundary-value problem (BVP), and the second form is nonlinear sixth-order initial value problem (IVP). The existen ce, uniqueness, error estimation and convergence analysis of purpose methods are investigated. The study shows that proposed spline method with three collocation points can find the spline solutions and their derivatives up to sixth-order of the two BVP and IVP, thus is very effective tools in numerically solving such problems. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested techniques.
In this paper, we use polynomial splines of eleventh degree with three collocation points to develop a method for computing approximations to the solution and its derivatives up to ninth order for general linear and nonlinear ninth-order boundary-v alue problems (BVPs). The study shows that the spline method with three collocation points when is applied to these problems is existent and unique. We prove that the proposed method if applied to ninth-order BVPs is stable and consistent of order eleven, and it possesses convergence rate greater than six. Finally, some numerical experiments are presented for illustrating the theoretical results and by comparing the results of our method with the other methods, we reveal that the proposed method is better than others.
In this paper, the numerical solution of general linear fifth-order boundary-value problem (BVP) is considered. This problem is transformed into three initial value problems (IVPs) and then spline functions with four collocation points are applied to the three IVPs. The presented spline method enables us to find the spline solution and derivatives up to fifth-order of BVP. By giving four examples and comparing with the other methods, the efficiency and highly accurate of the method will be shown.
In this paper, we introduce a numerical method for solving systems of high-index differential algebraic equations. This method is based on approximating the exact solution by spline polynomial of degree eight with five collocation points to find the numerical solution in each step. The study shows that the method when applied to linear differential-algebraic systems with index equal one is stable and convergent of order 8, while it is stable and convergent of order 9-u for index equal u . Numerical experiments for four test examples and comparisons with other available results are given to illustrate the applicability and efficiency of the presented method
In this paper, we develop spline collocation technique for the numerical solution of general twelfth-order linear boundary value problems (BVPs). This technique based on polynomial splines from order sixteenth as well as five collocation points at every subinterval of BVPs. The method developed not only approximates the solution of BVP, but its higher order derivatives as well. We show that the spline collocation method is existent and unique when it is applied into a test problem. Also, its global truncation error is estimated. Moreover, the purposed spline method when applied to test problems will be consistent and convergent from sixteenth order. Three numerical examples are given to illustrate the applicability and efficiency of the new method. Comparisons of our results with some other methods show that our method is very effective and successful.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا