Do you want to publish a course? Click here

Degree of variance parabolically- Kahlerian spaces Relative Holomorphically projective Mappings

درجة التباين (الاختلاف) لفضاءات كيلير المكافئية بالنسبة للتطبيقات الكولومورفية الإسقاطية

759   0   3   0 ( 0 )
 Publication date 2018
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper defined important expressions, a remembered important theorem which we need , approved essential theorem to be exist non trivial Holomorphically projective mapping between Kahlerian spaces. Finally we specified Kahlerian spaces which have maximum degree of variance parabolically – Kahlerian spaces.


Artificial intelligence review:
Research summary
يتناول هذا البحث دراسة درجة التباين لفضاءات كيلير المكافئية بالنسبة للتطبيقات الهولومورفية الإسقاطية. يبدأ البحث بتعريف أهم المفاهيم والمبرهنات المتعلقة بالموضوع، ثم يثبت المبرهنة الأساسية لوجود تطبيق هولومورفي إسقاطي غير مبتذل بين فضاءات كيلير المكافئية. أخيرًا، يحدد البحث فضاءات كيلير المكافئية التي تبلغ أقصى درجة حرية بالنسبة للتطبيقات الهولومورفية الإسقاطية. يتضمن البحث أيضًا مناقشة مفصلة للشروط اللازمة والكافية لوجود تطبيق هولومورفي إسقاطي بين فضائي كيلير، بالإضافة إلى تحليل رياضي دقيق للعلاقات والمعادلات التفاضلية المرتبطة بهذا الموضوع. يتم تقديم النتائج النهائية من خلال مجموعة من المبرهنات التي توضح الشروط التكاملية والتفاضلية اللازمة لتحقيق التطبيقات الهولومورفية الإسقاطية غير المبتذلة بين فضاءات كيلير المكافئية.
Critical review
دراسة نقدية: يعد هذا البحث مساهمة قيمة في مجال الهندسة التفاضلية وفضاءات كيلير، حيث يقدم تحليلًا رياضيًا دقيقًا وشاملًا لموضوع معقد. ومع ذلك، يمكن أن يكون البحث أكثر وضوحًا إذا تم تبسيط بعض المفاهيم الرياضية المعقدة وتقديم أمثلة تطبيقية توضيحية. بالإضافة إلى ذلك، يمكن تعزيز البحث بمزيد من الرسوم البيانية والشروحات البصرية التي تساعد في فهم العلاقات الرياضية بشكل أفضل. كما أن تضمين مقارنة مع أبحاث سابقة في نفس المجال يمكن أن يضيف قيمة إضافية للبحث.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو تحديد فضاءات كيلير التي تبلغ أقصى درجة تباين بالنسبة للتطبيقات الهولومورفية الإسقاطية.

  2. ما هي المبرهنة الأساسية التي تم إثباتها في البحث؟

    المبرهنة الأساسية التي تم إثباتها هي وجود تطبيق هولومورفي إسقاطي غير مبتذل بين فضاءات كيلير المكافئية.

  3. ما هي الشروط اللازمة والكافية لوجود تطبيق هولومورفي إسقاطي بين فضائي كيلير؟

    الشروط اللازمة والكافية لوجود تطبيق هولومورفي إسقاطي بين فضائي كيلير تتضمن تحقيق مجموعة من المعادلات التفاضلية الخطية الجزئية من المرتبة الأولى.

  4. كيف يمكن تحسين وضوح البحث؟

    يمكن تحسين وضوح البحث من خلال تبسيط المفاهيم الرياضية المعقدة، تقديم أمثلة تطبيقية توضيحية، واستخدام الرسوم البيانية والشروحات البصرية.


References used
Eisenhart L.P. Riemannian geometry. Princeton Univ. Press. 1926
Eisenhart L.P. Non-Riemannian geometry. Princeton Univ. Press. 1926. AMS Colloq. Publ. 8, 2000
Eisenhart L.P. Continuous groups of transformations. Princeton Univ. Press, 1933
rate research

Read More

In this paper we study conformal mappings between special Parabolically Kahlerian Spaces (commutative spaces). A proved , if exist conformal mapping between commutative Kahlerin spaces ,then the mapping is Homothetic mapping,
In this paper remembered important expressions and theorems related of paper, After word try to find conditions to be exist Isometric transformation and projective Transformation in in Parabolically- Kahlerian flat Spaces, and try to limiting the number of motion parameter in this transformations .
In this paper remembered important expressions and theorems related of paper, After word find conditions to be exist coformal transformation and Affine Transformation in Parabolically- Kahlerian flat Spaces, and limiting the number of motion parameter in this transformations .
In this paper devined parablically Sasakei space, and found necessary and sufficient conditions in order to exist geodesic mapping between tow Sasakei spaces , and broved that necessary and sufficien conditions to exist geodesic mapping between t ow Sasakie spaces with equivalent affinors are equidistant . A finally fond that is , if exist geodesic mappings between tow constant corvator parablically Sasakei spaces to there Rich tensors are proportional.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا