الهدف من هذا البحث هو دراسة المودولات الإسقاطية المحلية و الأفقية المحلية. بشكل خاص، تعد
هذه الورقة متابعة لدراسة المودولات الإسقاطية و الأفقية المحلية للحصول على وصف جديد لهذه
المودولات.
The object of this paper is to study the locally projective and locally injective
modules. Specifically, this paper is a continuation of study of locally projective
and locally injective modules, where a new description of locally projective and
locally injective modules is obtained.
References used
Kasch, F. (1982). Modules and Rings, Academic press London and NewYork
Kasch, F. (2002). Locally injective modules and locally projective modules, RockyMountain J. Math. 32(4) 1493-1504
Ware, R. (1971). Endomophism rings of projective modules, Trans. Amer. Math. Soc. 155, p.233-256
The concept of hereditary and semi-hereditary rings and
modules has grate effect in Theory of rings and modules, because
the relation between this concepts with Baer and Rickart rings and
modules.
For this reason, we generalize this concept by quasihereditary
rings.
The object of this paper is to study the total as substructure of hom (M,N) R
for any two modules R M and R N , one of interesting question, is when the total
of a module N equals the hom (N, J (N)) R .
In this research, we study right (left) dual semipotent rings as right
(left) rings, and dual semipotent modules as modules.
In this paper remembered important expressions and theorems related of
paper, After word try to find conditions to be exist
Isometric transformation and projective Transformation in in
Parabolically- Kahlerian flat Spaces, and try to limiting the number of
motion parameter in this transformations .
Let M and N be two modules over a ring R. The object of this paper is the study
of substructures of hom (M, N) R such as, radical, the singular, and co-singular
ideal and the total. The new obtained results include necessary and sufficient
conditi