Do you want to publish a course? Click here

Anti-Money Laundering using Data Mining techniques

مكافحة غسيل الأموال باستخدام تقنيات التنقيب عن المعطيات

2291   1   46   0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by Baraa Youzbashi




Ask ChatGPT about the research

This research presents literature review on using Artificial intelligence and Data Mining techniques in Anti Money Laundering systems. We compare many methodologies used in different research papers with the purpose of shedding some light on real life applications using Artificial intelligence


Artificial intelligence review:
Research summary
تقدم هذه الورقة البحثية مراجعة أدبية حول استخدام تقنيات الذكاء الاصطناعي والتنقيب عن البيانات في أنظمة مكافحة غسيل الأموال. يتم مقارنة العديد من المنهجيات المستخدمة في أوراق بحثية مختلفة بهدف تسليط الضوء على تطبيقات الذكاء الاصطناعي في حل مشاكل الحياة الواقعية. يتم تعريف غسيل الأموال على أنه عملية تحويل الأموال المكتسبة بطرق غير شرعية إلى أموال نظيفة قابلة للتداول في النشاطات العامة بشكل آمن. تتكون عملية غسيل الأموال من ثلاث مراحل: زرع المال، التمويه، والتكامل. تعتمد أغلب المصارف على عملية نصف مؤتمتة لكشف عمليات غسيل الأموال، حيث يتم تحديد التحويلات المالية المشتبه بها بناءً على معايير معينة، ثم يقوم شخص مختص بمراجعة هذه التحويلات للتأكد منها. تقترح الورقة استخدام تقنيات الذكاء الاصطناعي والتنقيب عن البيانات لتحسين هذه العملية. تشمل المنهجيات المقترحة استخدام الشبكات العصبونية مع مفاهيم العنقدة، استخدام طرق لتوليد القواعد مع أشجار القرار، وتحليل الشبكات الاجتماعية. تم اختبار هذه المنهجيات باستخدام بيانات حقيقية من مصارف، وأظهرت النتائج أن استخدام الشبكات العصبونية متعددة الطبقات (MLP) كان الأكثر فعالية في التعرف على حالات غسيل الأموال. كما تم استخدام تحليل الشبكات الاجتماعية لتحديد أدوار الأشخاص في شبكة غسيل الأموال وتحليل الترابطات بينهم، مما يسهل كشف زعماء العصابات ومواقع الضعف ضمن الشبكة.
Critical review
تقدم هذه الورقة البحثية مراجعة شاملة ومفصلة حول استخدام تقنيات الذكاء الاصطناعي والتنقيب عن البيانات في مكافحة غسيل الأموال. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، الورقة تعتمد بشكل كبير على البيانات المصرفية الحقيقية، ولكن لم يتم توضيح كيفية الحصول على هذه البيانات ومدى توافقها مع القوانين واللوائح المتعلقة بالخصوصية وحماية البيانات. ثانياً، على الرغم من أن الورقة تقدم مقارنة بين عدة منهجيات، إلا أنها لم تقدم تحليلًا عميقًا للأسباب التي تجعل بعض المنهجيات أكثر فعالية من غيرها. ثالثاً، الورقة لم تتناول بشكل كافٍ التحديات العملية التي قد تواجه تطبيق هذه التقنيات في بيئات مصرفية حقيقية، مثل التكاليف والبنية التحتية المطلوبة. وأخيراً، كان من المفيد تقديم توصيات واضحة للمصارف حول كيفية تنفيذ هذه التقنيات بشكل فعال.
Questions related to the research
  1. ما هي المراحل الثلاث لعملية غسيل الأموال؟

    تتكون عملية غسيل الأموال من ثلاث مراحل: زرع المال، التمويه، والتكامل.

  2. ما هي التقنيات المستخدمة في الورقة لتحسين كشف عمليات غسيل الأموال؟

    تشمل التقنيات المستخدمة الشبكات العصبونية، توليد القواعد مع أشجار القرار، وتحليل الشبكات الاجتماعية.

  3. ما هو الهدف الرئيسي من استخدام تقنيات الذكاء الاصطناعي في مكافحة غسيل الأموال؟

    الهدف الرئيسي هو تحسين دقة وكفاءة عملية كشف عمليات غسيل الأموال وتقليل الاعتماد على التدخل البشري.

  4. ما هي التحديات التي لم تتناولها الورقة بشكل كافٍ؟

    لم تتناول الورقة بشكل كافٍ التحديات العملية المتعلقة بتطبيق هذه التقنيات في بيئات مصرفية حقيقية، مثل التكاليف والبنية التحتية المطلوبة.


References used
Salehi, A., Ghazanfari, M., & Fathian, M. (2017). Data Mining Techniques for Anti Money Laundering. International Journal of Applied Engineering Research, 12(20), 10084-10094
El-Din, A. K., & El Khamesy, N. (2016). Data Mining Techniques for Anti-Money Laundering. International Journal of Computer Applications, 146(12), 28-33. doi:10.5120/ijca2016910953
R. Drezewski et al., The application of social network analysis algorithms in a system supporting money laundering detection, Inform. Sci. (2014), http://dx.doi.org/10.1016/j.ins.2014.10.015
Alexandre C., Balsa J. (2016) Integrating Client Profiling in an Anti-money Laundering Multi-agent Based System. In: Rocha Á., Correia A., Adeli H., Reis L., Mendonça Teixeira M. (eds) New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 444. Springer, Cham
rate research

Read More

تقترح هذه الورقة استخدام تقنيات استخراج المعرفة للكشف عن غسيل الاموال في الأنظمة المصرفية بالاضافة الى ذكر نظام مطبق للكشف عن غسيل الاموال باستخدام خوارزمية clope
Through this study we will explain the application of data mining and business intelligence using the data existed in the library of the Arab International University. This data has been linked to the data of the students on the academic system of the university. The study will also answer questions that affect the work of the educational institution in general and the library in particular, propose solutions to improve the work of the library and its services, enhance library working methods, and specify indicators related to the role of information resources in the educational operation.
Educational data mining aims to study the available data in the educational field and extract the hidden knowledge from it in order to benefit from this knowledge in enhancing the education process and making successful decisions that will improve th e student’s academic performance. This study proposes the use of data mining techniques to improve student performance prediction. Three classification algorithms (Naïve Bayes,J48, Support Vector Machine) were applied to the student performance database, and then a new classifier was designed to combine the results of those individual classifiers using Voting Method. The WEKA tool was used, which supports a lot of data mining algorithms and methods. The results show that the ensemble classifier has the highest accuracy for predicting students' levels compared to other classifiers, as it has achieved a recognition accuracy of 74.8084%. The simple k-means clustering algorithm was useful in grouping similar students into separate groups, thus understanding the characteristics of each group, which helps to lead and direct each group separately.
Flight delays are frequent all over the world (about 20% of airline flights arrive more than 15 minutes late) and they are estimated to have an annual cost of several tens of billion dollars. This scenario makes the prediction of flight delays a pr imary issue for airlines and travelers. The main goal of this work is to implement a predictor of the arrival delay of a scheduled flight due to weather conditions. The predicted arrival delay takes into consideration both flight information (origin airport, destination airport, scheduled departure and arrival time) and weather conditions at origin airport and destination airport according to the flight timetable. Airline flights and weather observations datasets have been analyzed and mined using parallel algorithms implemented as MapReduce programs executed on a Cloud platform. The results show a high accuracy in predicting delays above a given threshold. For instance, with a delay threshold of 15 minutes we achieve an accuracy of 74.2% and 71.8% recall on delayed flights, while with a threshold of 60 minutes the accuracy is 85.8% and the delay recall is 86.9%. Furthermore, the experimental results demonstrate the predictor scalability that can be achieved performing data preparation and mining tasks as MapReduce applications on the Cloud.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا