Do you want to publish a course? Click here

Using Scalable Data Mining for Predicting Flight Delays

استخدام التنقيب في المعطيات القابلة للقياس في التنبؤ بتأخر الرّحلات الجوّية

1614   3   32   0.0 ( 0 )
 Publication date 2019
and research's language is العربية
 Created by Mohammad Novol




Ask ChatGPT about the research

Flight delays are frequent all over the world (about 20% of airline flights arrive more than 15 minutes late) and they are estimated to have an annual cost of several tens of billion dollars. This scenario makes the prediction of flight delays a primary issue for airlines and travelers. The main goal of this work is to implement a predictor of the arrival delay of a scheduled flight due to weather conditions. The predicted arrival delay takes into consideration both flight information (origin airport, destination airport, scheduled departure and arrival time) and weather conditions at origin airport and destination airport according to the flight timetable. Airline flights and weather observations datasets have been analyzed and mined using parallel algorithms implemented as MapReduce programs executed on a Cloud platform. The results show a high accuracy in predicting delays above a given threshold. For instance, with a delay threshold of 15 minutes we achieve an accuracy of 74.2% and 71.8% recall on delayed flights, while with a threshold of 60 minutes the accuracy is 85.8% and the delay recall is 86.9%. Furthermore, the experimental results demonstrate the predictor scalability that can be achieved performing data preparation and mining tasks as MapReduce applications on the Cloud.



References used
https://www.researchgate.net/publication/292539590_Using_Scalable_Data_Mining_for_Predicting_Flight_Delays
rate research

Read More

This research presents literature review on using Artificial intelligence and Data Mining techniques in Anti Money Laundering systems. We compare many methodologies used in different research papers with the purpose of shedding some light on real life applications using Artificial intelligence
Through this study we will explain the application of data mining and business intelligence using the data existed in the library of the Arab International University. This data has been linked to the data of the students on the academic system of the university. The study will also answer questions that affect the work of the educational institution in general and the library in particular, propose solutions to improve the work of the library and its services, enhance library working methods, and specify indicators related to the role of information resources in the educational operation.
In this research, we offered a new and simple way of Handwriting Characters Recognition. This way extracts positions of the black points from binary images (black, white) according to certain coordinates which are used in the stages of training an d testing. The extracted positions are stored in a database according to appropriate structure for predictive data mining. We used training data to build a predictive model which helps in Recognition testing data depending on the data stored in the database. We have conducted a number of tests on different samples of handwriting character images. We got accurate results, within the required conditions.
The advances in location-acquisition and mobile computing techniques have generated massive spatial trajectory data, which represent the mobility of a diversity of moving objects, such as people, vehicles and animals. Many techniques have been propos ed for processing, managing and mining trajectory data in the past decade, fostering a broad range of applications. In this article, we conduct a systematic survey on the major research into trajectory data mining, providing a panorama of the field as well as the scope of its research topics. Following a roadmap from the derivation of trajectory data, to trajectory data preprocessing, to trajectory data management, and to a variety of mining tasks (such as trajectory pattern mining, outlier detection, and trajectory classification), the survey explores the connections, correlations and differences among these existing techniques. This survey also introduces the methods that transform trajectories into other data formats, such as graphs, matrices, and tensors, to which more data mining and machine learning techniques can be applied. Finally, some public trajectory datasets are presented. This survey can help shape the field of trajectory data mining, providing a quick understanding of this field to the community.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا