Do you want to publish a course? Click here

Modeling and Simulating of production system by using Digital Factory Concept

نمذجة و محاكاة نظام إنتاج باستخدام مفهوم المصنع الرقمي

2088   1   40   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The quick consuming of products and the strong competition between producers caused to increase the complexity of products, so the digital factory became a need between design and producing actually to achieve a production system with a shorter time and optimal design and parameters without engineering modifications. This research offering a reference model basing on a complete framework between the engineering applications to build a computational model with a single core based on the integration between three dimensions modeling and automation of application for digital factory concept, to optimize the design of achieving the ideal execution of actual production system. Where we achieved the control of three-dimensional computer model according to process automation exactly as in actual through integrating tools, where the percentage of exact between the real factory and digital factory was 83% by using the time of process as the main factor for comparison in this evaluation.

References used
Chung- C,Wee-H-2011-Short life-cycle deteriorating product remanufacturing in a green supply chain inventory control system-Int. J.Prod. Econ.- 195–203
Himmler-F, Amberg-M-2013 A Reference Process Based Software Market Analysis for the Digital Factory-Proc. IADIS Int. Conf. - Collab. Technol
Matysczok-C,Meyer-D-2009- Erfolgsfaktoren bei der strategischen Einführung der Digitalen Fabrik, Zeitschrift Für WirtschaftlichenFabrikbetr.- 27–31
rate research

Read More

This study has reached to that ANN (5-9-1) (five neurons in input layer_nine neurons in hidden layer _ one neuron in output layer) is the optimum artificial network that hybrid system has reached to it with mean squared error equals (1*10^-4) (0.7 m3/sec), where this software has summed up millions of experiments in one step and in limited time, it has also given a zero value of a number of network connections, such as some connections related of relative humidity input because of the lake of impact this parameter on the runoff when other parameters are avaliable. This study recommend to use this technique in forecasting of evaporation and other climatic elements.
In this research an absorptive cooling cycle system modeling which can be used for conditioning purposes by using EES program was done. By using this program, the effect of temperature of the vapor generator, the evaporator and the condenser on the p erformance of the vapor cycle and the circulating coefficient was studied as well as the effect of the evaporating range width in the generator and the definition the values and ideal ranges for each part. The result showed that whenever the condenser temperature increases the performance coefficient ( COP ) decreases, and by increasing the condensation temperature from 18 – 36 C , thus the values of the circulating coefficient increases, while the average temperature released from the condenser to the external environment decreases at the same range of the previous temperature, and that the increase of the evaporator temperature would increase the performance coefficient ( COP ). An absorptive cooling circuit system modeling using water and lithium bromide was achieved. Results showed that the increase of the evaporator temperature of between 4 -13 C, the average of heat amount drawn from the desired place to be cooled would increase.
The purpose of research is to build a model of the electric driving system for threephase squirrel-cage induction motor using oriented electric field method so as to control both the speed , flux and current, ( PI ) controllers was used . The mach ine model has been formed based on the equations of the machine written in the stationary coordinates . To complete the process of control without measuring the rotor flux , a model of flux from the measured values of stator current and rotor speed was build, and it can be measured directly .
Hydrogen production, vector of energy, by water electrolysis can be economically viable by using electrical energy from renewable sources such as photovoltaic solar energy. In this research was the study of solar hydrogen production using electroly ser based on polymeric exchange membrane electrolysis technology manufactured locally at the Faculty of Technical Engineering in Tartous. The experimental studies were achieved in two different methods: the first, direct coupling to the hydrogen electrolyser with PV module. The second method, designed PV-electrolyzer system consists of the following components: PV module, a maximum power point tracker (MPPT), A DC-DC converter, which is used to operate the system at the maximum power of the PV system at all times and to supply the necessary DC current to the electrolyzer, and tank hydrogen. The results showed that the second method more effective and highly efficient when compared with the first method because of the change in the intensity of solar radiation during the day. Also, results show that some additives such as (KOH) play an important role in enhancing the ionization process of the electrolyte liquid and improve process flow.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا