Do you want to publish a course? Click here

Modeling of Absorptive Cooling Cycle System for Conditioning Purposes by Using EES Program

نمذجة نظام دارة تبريد امتصاصية لأغراض التكييف باستخدام برنامج EES

3037   4   93   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this research an absorptive cooling cycle system modeling which can be used for conditioning purposes by using EES program was done. By using this program, the effect of temperature of the vapor generator, the evaporator and the condenser on the performance of the vapor cycle and the circulating coefficient was studied as well as the effect of the evaporating range width in the generator and the definition the values and ideal ranges for each part. The result showed that whenever the condenser temperature increases the performance coefficient ( COP ) decreases, and by increasing the condensation temperature from 18 – 36 C , thus the values of the circulating coefficient increases, while the average temperature released from the condenser to the external environment decreases at the same range of the previous temperature, and that the increase of the evaporator temperature would increase the performance coefficient ( COP ). An absorptive cooling circuit system modeling using water and lithium bromide was achieved. Results showed that the increase of the evaporator temperature of between 4 -13 C, the average of heat amount drawn from the desired place to be cooled would increase.

References used
Alizadeh, S. "Multi-pressure absorption cycles in solar refrigeration: a technical and economical study" Solar Energy 69, (2000) 37 – 44
Chen, G.; Hihara, E. „A new absorption refrigeration cycle using solar energy“ Solar Energy 66, (1999) 479 – 482
Sözen, A. "Effect of heat exchanger on performance of absorption refrigeration systems" Energy Conversion and Management 42, (2001) 1699-1716
(EES:Engineering Equation Solver" F-Chart Software, www.fchart.com/ees/ees.shtml. or www.southalabama.edu/engineering/solver.shtml, (2012
rate research

Read More

This research is concerned in modeling the problem of sloshing in moving cylindrical containers in ANSYS program where we model the problem on a partially filled cylinder then we find the resonant frequencies in addition to study the interaction between the cylinder and the fluid.
The quick consuming of products and the strong competition between producers caused to increase the complexity of products, so the digital factory became a need between design and producing actually to achieve a production system with a shorter ti me and optimal design and parameters without engineering modifications. This research offering a reference model basing on a complete framework between the engineering applications to build a computational model with a single core based on the integration between three dimensions modeling and automation of application for digital factory concept, to optimize the design of achieving the ideal execution of actual production system. Where we achieved the control of three-dimensional computer model according to process automation exactly as in actual through integrating tools, where the percentage of exact between the real factory and digital factory was 83% by using the time of process as the main factor for comparison in this evaluation.
The aim of this study is investigate in using refrigerants mixtures as substitute to R134a in a testing compression refrigeration cycle designed to work with a mass of 100g of R134a without make changing or modification in the cycle. The new mixtur e that made it is ozone-friendly, safe for using and consists of R134a, propane R290, butane R600, we use three various types of this mixture and the coefficient of performance (COP) and other properties was compared with R134a on the same conditions and on different evaporation temperature. The results shows the refrigerant mixture (M40) has higher coefficient of performance (COP) than that of R134a by about 7.77% and increasing the refrigeration effect about 30% and decreasing the discharge temperature from compressor 3.2% compared with R134a. This study support possibility of using refrigerant mixtures in refrigeration cycle that designed to work with pure refrigerant (single component) without making any change in the cycle also it support the possibility of using refrigerant that have an excellent thermodynamic properties and environmentally friendly like Propane and butane but there are some warning from using it because their flaming.
In this research, an absorption cooling system of nominal capacity 10 [kW] has been built and tested; it works by different sources of heat and by different working fluids, it is equipped with adequate sensors for measuring temperature, flows and pre ssures in multiple locations. The features of operating the machine for air conditioning has been determined, analyzed and discussed with the working fluid “water-Lithium Bromide” by different boundary conditions. The results of experiments proved the possibility of the work of solar absorption cooling machine continuously at the heating temperature of the generator of 60 [°C] producing cold water in the evaporator at a temperature less than 10 [°C] with a coefficient of performance 0,5 and this enables us to use Simple and cheap flat solar collectors for the operation of the machine.
This search was carried out in order to generate electricity small capacities especially in remote locations far from the electricity grid. the search includes a thermal analytical study of mini radial turbine which represents the Expander in Organ ic Rankine Organic Cycle (EES). In this search, the selection multiple parameters and study the effect of each parameter on the outlet of the mini turbine using the program EES (Engineering Equation Solver) was done using several working fluids to drive a mini turbine, and We have conducted a comparison between them and determine the best impact on the outlet of the mini turbine.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا