Do you want to publish a course? Click here

It is known that, the available power from a photovoltaic system is unpredicted and differs with climatic changes, so it has an intermittent nature, in other words it is unable to supply the load continuously and steadily. Because of that, storage methods of its energy must be studied to use it again in a way that could be predicted. Hydrogen production is one of these methods by connecting the PV system to water electrolysers, and this stored hydrogen could be used either in fuel cells or burning it to get thermal energy. This study focuses on PV system and the available energy taken from it, and the electrolysers and its requirements and products. Making a mathematical model would be done and plotting the curves that represent the system by programming it using MATLAB. A simple numeral example that clears the system would be calculated. By this way, the energy efficiency would be between 23 to 67 % according to the way the produced hydrogen is used.
Hydrogen production, vector of energy, by water electrolysis can be economically viable by using electrical energy from renewable sources such as photovoltaic solar energy. In this research was the study of solar hydrogen production using electroly ser based on polymeric exchange membrane electrolysis technology manufactured locally at the Faculty of Technical Engineering in Tartous. The experimental studies were achieved in two different methods: the first, direct coupling to the hydrogen electrolyser with PV module. The second method, designed PV-electrolyzer system consists of the following components: PV module, a maximum power point tracker (MPPT), A DC-DC converter, which is used to operate the system at the maximum power of the PV system at all times and to supply the necessary DC current to the electrolyzer, and tank hydrogen. The results showed that the second method more effective and highly efficient when compared with the first method because of the change in the intensity of solar radiation during the day. Also, results show that some additives such as (KOH) play an important role in enhancing the ionization process of the electrolyte liquid and improve process flow.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا