Do you want to publish a course? Click here

Using Top-Hat and Bottom-Hat Transforms for Contrast Enhancement of Mammograms

استخدام تحويلي TOP-HAT و BOTTOM-HAT لتحسين تباين صور الماموغرام

1656   1   30   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information. Many contrast enhancement algorithms have been developed over the years. This work presents a method to enhancement Microcalcifications in digitized mammograms. The method is based Mainly on the combination of Image Processing. The top-Hat and bottom–hat transforms are a techniques based on Mathematical morphology operations. This algorithm has been tested on mini-Mias database which have three types of breast tissues . For evaluation of performance of image enhancement algorithm, the Contrast Improvement Index (CII) and Peak Signal to Noise Ratio (PSNR) have been used. Experimental results suggest that algorithm can be improve significantly overall detection of the Computer-Aided Diagnosis (CAD) system especially for dense breast.


Artificial intelligence review:
Research summary
يهدف هذا البحث إلى تحسين تباين صور الماموغرام باستخدام تحويلي Top-Hat و Bottom-Hat اللذين يعتمدان على العمليات المورفولوجية الرياضية. تعتبر صور الماموغرام أداة فعالة للكشف المبكر عن سرطان الثدي، لكن التباين المنخفض لهذه الصور يشكل تحدياً لأطباء الأشعة. تم اختبار الطريقة المقترحة على مجموعة من الصور من قاعدة بيانات mini-Mias، وتم تقييم الأداء باستخدام معيار تحسين التباين (CII) ونسبة ذروة الإشارة إلى الضجيج (PSNR). أظهرت النتائج أن الخوارزمية المقترحة قادرة على تحسين نظام التشخيص بمساعدة الحاسب (CAD) خاصة للأنسجة الكثيفة. تعتمد الطريقة على إزالة الضجيج باستخدام مرشح Wiener، ثم تطبيق تحويلي Top-Hat و Bottom-Hat، وأخيراً تحسين التباين المحلي بإضافة الصورة الأصلية إلى الفرق بين الصورتين الناتجتين من التحويلين. تم تقييم الأداء من خلال معايير كمية مثل CII و PSNR، وأظهرت النتائج تحسناً ملحوظاً في تباين الصور وخاصة للأنسجة الكثيفة.
Critical review
تقدم الدراسة خوارزمية فعالة لتحسين تباين صور الماموغرام باستخدام العمليات المورفولوجية، وقد أظهرت النتائج تحسناً ملحوظاً في تباين الصور وخاصة للأنسجة الكثيفة. ومع ذلك، يمكن أن تكون هناك بعض النقاط التي تحتاج إلى مزيد من البحث والتطوير. على سبيل المثال، قد يكون من المفيد مقارنة الخوارزمية المقترحة مع تقنيات أخرى حديثة لتحسين التباين. كما أن الدراسة لم تتناول بشكل كافٍ تأثير الضوضاء على نتائج التحسين، وهو ما يمكن أن يكون له تأثير كبير على جودة الصور النهائية. بالإضافة إلى ذلك، قد يكون من المفيد تطبيق الخوارزمية على مجموعة أكبر من الصور للتحقق من عموميتها وفعاليتها في مختلف الحالات.
Questions related to the research
  1. ما هي التقنية الأساسية المستخدمة في هذا البحث لتحسين تباين صور الماموغرام؟

    التقنية الأساسية المستخدمة هي تحويلي Top-Hat و Bottom-Hat اللذين يعتمدان على العمليات المورفولوجية الرياضية.

  2. ما هي قاعدة البيانات التي تم استخدامها لاختبار الخوارزمية المقترحة؟

    تم استخدام قاعدة بيانات mini-Mias لاختبار الخوارزمية المقترحة.

  3. ما هي المعايير التي تم استخدامها لتقييم أداء الخوارزمية؟

    تم استخدام معيار تحسين التباين (CII) ونسبة ذروة الإشارة إلى الضجيج (PSNR) لتقييم أداء الخوارزمية.

  4. ما هي الخطوة الأولى في منهجية البحث لتحسين تباين صور الماموغرام؟

    الخطوة الأولى هي إزالة الضجيج من الصورة باستخدام مرشح Wiener.


References used
BORING,C.C., SQUIRES, T.S. and TONG, T.; "Cancer statistics, 1992, CA", A Cancer Journal for Clinicians, Vol. 42, No. 1, pp. 19-38, 1992
JOHNS .P.C., YAFFE .M.J.,“X-ray characterization of normal and neoplastic breast tissues,” Physics Medical and Biology, Vol.32, no. 6, 1987, 675-695
THANGAVEL .K., KARAN .M., SIVAKUMAR .R., KAJA MOHIDEEN.A., “Automatic detection of microcalcification in mammograms: a review,” ICGST-GVIP Journal, Volume (5), Issue (5), May 2005
rate research

Read More

A mammogram is the best option for early detection of breast cancer, Computer Aided Diagnostic systems(CADs) developed in order to improve the diagnosis of mammograms. This paper presents a proposed method to automatic images segmentation dependin g on the Otsu's method in order to detect microcalcifications and mass lesions in mammogram images. The proposed technique is based on three steps: (a) region of interest (ROI), (b) 2D wavelet transformation, and (c) OTSU thresholding application on ROI. The method tested on standard mini- MIAS database. It implemented within MATLAB software environment. Experimental results and performance evaluate results show that the proposed detection algorithm is a tool to help improve the diagnostic performance, and has the possibility and the ability to detect the breast lesions.
Breast cancer is the most widespread types of cancer among women. An efficient diagnosis in its early stage can give women a better chance of full recovery. Calcification is the important sign for early breast cancer detection. Mammography is the m ost effective method for breast cancer early detection using low radiation doses. The studies improved the sensitivity of mammogram from 15% to 30% based on Computer Auto-Detection CAD systems, which are used as a “second opinion” to alert the radiologist to structures that, otherwise, might be overlooked. This article summarizes the various methods adopted for micro-calcification cluster detection and compares their performance. Moreover, reasons for the adoption of a common public image database as a test bench for CAD systems, motivations for further CAD tool improvements, and the effectiveness of various CAD systems in a clinical environment are given.
Following the success of dot-product attention in Transformers, numerous approximations have been recently proposed to address its quadratic complexity with respect to the input length. While these variants are memory and compute efficient, it is not possible to directly use them with popular pre-trained language models trained using vanilla attention, without an expensive corrective pre-training stage. In this work, we propose a simple yet highly accurate approximation for vanilla attention. We process the queries in chunks, and for each query, compute the top-*k* scores with respect to the keys. Our approach offers several advantages: (a) its memory usage is linear in the input size, similar to linear attention variants, such as Performer and RFA (b) it is a drop-in replacement for vanilla attention that does not require any corrective pre-training, and (c) it can also lead to significant memory savings in the feed-forward layers after casting them into the familiar query-key-value framework. We evaluate the quality of top-*k* approximation for multi-head attention layers on the Long Range Arena Benchmark, and for feed-forward layers of T5 and UnifiedQA on multiple QA datasets. We show our approach leads to accuracy that is nearly-identical to vanilla attention in multiple setups including training from scratch, fine-tuning, and zero-shot inference.
This research gives a new type of encryption, using vectors give me a private encryption key, which generates a triangular matrices from the top (bottom), and check conditions matrix Hill. These matrices resulting from private vectors constitute a relatively preliminary numbers of size n = 256 The encryption process produces by multiplying the original matrix encryption keys.
In the context of neural passage retrieval, we study three promising techniques: synthetic data generation, negative sampling, and fusion. We systematically investigate how these techniques contribute to the performance of the retrieval system and ho w they complement each other. We propose a multi-stage framework comprising of pre-training with synthetic data, fine-tuning with labeled data, and negative sampling at both stages. We study six negative sampling strategies and apply them to the fine-tuning stage and, as a noteworthy novelty, to the synthetic data that we use for pre-training. Also, we explore fusion methods that combine negatives from different strategies. We evaluate our system using two passage retrieval tasks for open-domain QA and using MS MARCO. Our experiments show that augmenting the negative contrast in both stages is effective to improve passage retrieval accuracy and, importantly, they also show that synthetic data generation and negative sampling have additive benefits. Moreover, using the fusion of different kinds allows us to reach performance that establishes a new state-of-the-art level in two of the tasks we evaluated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا