Do you want to publish a course? Click here

Fiber Bragg Grating (FBG) Performance Analyzing In Optical System Uses Amplifier (EDFA)Fiber Erbium Doped

تحليل أداء شبكة براغ الليفية FBG في نظام ضوئي يستخدم مضخم الليف المشاب بالإيربيوم EDFA

1803   0   113   0 ( 0 )
 Publication date 2015
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Studying is showed that the amount of exchanging information in the network surprisingly grows due to developing new communication services. But, when data rates increase the optical system performance degrades due to dispersion, which was taken into account in this research. Where as the reduction of dispersion losses is important in optical networks. Fiber Bragg Grating (FBG) is one of the most important components of optical communication systems, and one of the effective methods used for this goal. This article tests the effect of using FBG as dispersion compensator in optical communication systems, where we simulate optical communication system using FBG. And study the effect of Erbium Doped Fiber Amplifier (EDFA) and FBG and fiber optic parameters on this system performance, and it has been finding the best values of the system parameters. Which the simulation model depended on two Optisystem7 and Matlab software. We evaluate performance through eye diagram and two factors Q, Bit Error Rate (BER).

References used
OTHMAN, M. A.; ISMAIL, M. M; SULAIMAN, H. A. An Analysis of 10 Gbits/s Optical Transmission System using Fiber Bragg Grating (FBG).IOSR Journal of Engineering (IOSRJEN), Malaysia, Volume 2, Issue 7(July 2012), PP 55-61
RAGHAV, P. K.; SINGH, M. P. ; Chaudhary, R. Optimized Dispersion Compensation with Post Fiber Bragg Grating in WDM Optical Network. International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012, 5
BHARDWAJ, A.; SONI, G. Performance Analysis of 20Gbps Optical Transmission System Using Fiber Bragg Grating. International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015, 4
rate research

Read More

Optical fiber is one of the most important communications media in communication system. Due to its versatile advantages and negligible transmission loss it is used in high speed data transmission. There are various types of optical fiber, the Fibe r Bragg Grating (FBG) is commonly chosen as important components to compensate the dispersion in optical communication system. Because the low cost of filter for wavelength selection and low insertion loss, it has also customized reflection spectrum and wide bandwidth. The simulation of transmission system will be analyzed based on different parameters using OptiSystem simulator. By simulating a model of communication system and using the most suitable settings of the system which include input power, fiber cable length (km) and attenuation coefficient (dB/km) at cable section, there are three different parameters will be investigated, which are Signal power, Noise power, output power at receiver.
We determined the optimal length of the fiber amplifier theoretically by solving numerically set of differential equations of a single stage and one pass amplifier, using MATLAB. Input values, as doped density, core radius, pumping power and input signal were changed, and the optimal fiber length was calculated.
The aim of this research is to study of detection sensitivity in optical preamplifier, which is used as a first stage in optical receivers. This subject is important because it is used in laser rangefinders. The parameters that affect the distance measurement using time of flight technique are studied in details. Then, noise analysis and signal to noise ratio calculation are performed in preamplifiers to detect a signal with pulse width of 30ns using Matlab. The study results are applied to some preamplifiers to determine the minimum detectable power.
This research aims to study and design a single mode optical fiber using simulation, with a core and glass cladding, and also helps in ensuring the efficiency to use the optical fiber designed within the broading window C-Band,and that these resear ches and studies tries to use this window. This research also shares to set the light on the Numerical Programmes and Simulation used now in studying and designing these optical fibers. At first we used the programOptifiberto reach the confidence of Sellmeier equation for the fiber core, and this completed by using the finite element method solving the equation of propagation the electric field and finding its 3-D distribution, using the famous simulating COMSOLMultiphysics. This completed by putting the program MATLAB to reach the two equation: the total dispersion and attenuation for the designed optical fiber.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا